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Bézout coefficients

Let a, b ∈ Z>0 have gcd(a, b) = 1.

Theorem (Bézout Bachet 1624)
There exist u, v ∈ Z such that au − bv = 1.

We call u, v Bézout coefficients.

What conditions can we put on the Bézout coefficients?

Given one solution (u0, v0), all solutions are parametrized by t ∈ Z:

u = u0 + bt

v = v0 + at

So we may suppose that u, v > 0.

Moreover, we may choose u modulo m arbitrarily, if
gcd(m, ab) = 1.



Square Bézout coefficients

Can we suppose that u = x2 and v = y2 are squares (x , y ∈ Z)?
This is the Diophantine equation

ax2 − by2 = 1.

To solve with x , y ∈ Q, we have the Hilbert equation, so we need(
a,−b
Q

)
' M2(Q)

which holds if and only if (a,−b)p = 1 for all p | d odd. (These
give necessary, local conditions for a solution over Z.)



Square Bézout coefficients
The Diophantine equation ax2 − by2 = 1 is a norm equation or
not-quite-Pell equation.

Scaling gives
(ax)2 − aby2 = a.

Letting d := ab > 1, we solve

NmQ(
√
d)|Q(ax +

√
dy) = a.

Let
a = aZ+

√
dZ ⊆ Z[

√
d ].

Then a is an ideal, and

(ax)2 − dy2 = a⇔ ax +
√
dy ∈ a has norm a

⇔ a = (ax +
√
d) is narrowly principal

so the obstruction to the integral local–global principle is found in
the narrow class group Cl+ Z[

√
d ].

Infinitely many solutions arise multiplying by Z[
√
d ]1 = 〈η〉.



Norm Bézout coefficients
What about asking that u, v are norms from a quadratic extension?

We focus on a special case, specific to original motivation.

Let ω =
−1+

√
−3

2
, so ω2 + ω + 1 = 0. Consider the Eisenstein

integers Z[ω] ⊆ Q(ω). Let

L := NmQ(ω)|Q(Z[ω])

be the Löschian numbers. Explicitly,

Nm(x + ωy) = x2 − xy + y2 = (x − y/2)2 + 3y2/4 ≥ 0

= (x + y)2 − 3xy ≡ 0, 1 (mod 3).

L>0 := L ∩ Z>0 is closed under multiplication, generated by

{3} ∪ {p : p prime with p ≡ 1 (mod 3)}
∪ {q2 : q prime with q ≡ 2 (mod 3)}.

Under what circumstances can we take the Bézout coefficients to
be Löschian numbers?



Main result
Question
Under what circumstances can we take the Bézout coefficients to
be Löschian numbers?

The answer is not always “yes”. For (a, b) = (5, 3), we have
5 · 2− 3 · 3 = 1 so the general solution is (u, v) = (2+ 3t, 3+ 5t)
and u 6∈ L.

But this is a minor inconvenience: we can solve with (a, b) = (3, 5),
e.g. 3 · 7− 5 · 4 = 1.

Theorem (Cartwright–Roulleau–V)
Let a, b ∈ Z>0 be coprime, d := ab. Then the following statements
hold.
(a) There exist infinitely many u, v ∈ L such that au − bv = ±1.
(b) If d ≡ 0, 2 (mod 3), then moreover 3 - uv .

(If d ≡ 1 (mod 3), we must have 3 | uv .)



Quaternions!

We need to solve the Diophantine equation

aNm(µ)− bNm(ν) = a(t2 − tx + x2)− b(y2 − yz + z2) = ±1

for µ, ν ∈ Z[ω]. We recognize this a quaternion norm equation, or
a not-quite-quaternion-Pell equation!

We rinse and repeat, but with quaternions!

Consider the (crossed product) quaternion order

O := Z[ω] + Z[ω]j ⊂ B :=

(
−3, d
Q

)
.

So jω = ω2j . Then we solve

nrd(aµ+ ν) = a2 Nm(µ)− d Nm(ν) = ±a.



Quaternion order

Let O =

(
Z[ω],−d

Z

)
⊂ B =

(
−3, d
Q

)
.

We have 3 6= p ∈ RamB if and only if p ≡ 2 (mod 3) and ordp(d)
is odd.

The order O has N := discrdO = 3d and is classified locally by
Op := O ⊗Z Zp and the Fp-algebra Op := Op/ rad(Op):

I If p - N, then Op ' M2(Zp).
I If p | N and p ≡ 1 (mod 3), then Op is residually split

(Eichler, Op ' Fp × Fp).
I If p | N and p ≡ 2 (mod 3), then Op is residually inert (Pizer,
Op ' Fp2).

I If p = 3, then O3 is hereditary (if 3 - d) or residually ramified
(Op ' Fp, if 3 | d).



Class number

Recall that the (right) class set ClsO is the set of classes of
invertible (equivalently, locally principal) right O-ideals under the
equivalence I ∼ J if and only if I = αJ for some α ∈ B×.

Proposition
#ClsO = 1, i.e., every invertible right O-ideal is principal.

Since B is indefinite, it satisfies strong approximation:

“ideal classes in ClsO
are determined by

their reduced norms (in a ray class group)”



Class number: idelic

Ẑ =
∏
p

Zp (profinite completion of Z)

Q̂ = Ẑ⊗Z Q =
∏
p

′Qp (finite adeles)

B̂ = B ⊗Q Q̂

Ô = O ⊗Z Ẑ.

Then ClsO = B×\B̂×/Ô× and

nrd: B×\B̂×/Ô× ↔ Q×\Q̂×/ nrd Ô× =: G .

Then G is a class group of Z.

From the local description, we have

nrd(Ô×) =
∏
p

nrd(O×p ) ≥ Z×2
3

∏
p 6=3

Z×p

so G admits a surjection from the ray class group of conductor 3
which is trivial, so G = {1}.



End of proof

We solve the Diophantine equation

nrd(aµ+ ν) = a2(t2 − tx + x2)− d(y2 − yz + z2) = ±a

with aµ+ ν ∈
(
Z[ω],−d

Z

)
.

We consider
I := aZ[ω] + jZ[ω] ⊆ O

an invertible (locally principal) right O-ideal with nrd(I ) = aZ.
Then I = αO is principal, with nrd(α) = ±a. (α is an
Atkin–Lehner involution.)

We obtain infinitely many solutions multiplying by O1 (infinite,
finitely generated: acts discretely and properly on the upper
half-plane).



Applications and conclusion

Theorem (Cartwright–Roulleau–V)
Let a, b ∈ Z>0 be coprime, d := ab. Then there exist infinitely
many u, v ∈ L = Nm(Z[ω]) such that au − bv = ±1.

I #ClsO = 1 also allows us to count elements of order 3 in O
up to conjugation by O×, using local embedding numbers (in
an explicit manner).
To γ = t + xω + (y + zω)j ∈ O× with order 3, we attach the
pair (a, b) = (gcd(t, d), gcd(t + 1, d)).

I This counts the number of inequivalent ways of writing a
generalized Kummer surface X in the form Ã/G for #G = 3.

I Our theorem generalizes to other imaginary quadratic fields (in
progress).


