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Outline of the talk:

Positive definite functions and examples.

Reproducing kernel Hilbert spaces and reproducing kernel Pontryagin
spaces (Krein spaces will also appear).

Some important examples (complex setting). Bargmann-Fock-Segal
space, Drury-Arveson space, de Branges Rovnyak space.

Why one can consider the quaternionic setting. Different kinds of
analyticity.

Some examples from the quaternionic setting (hypercomplex and
Fueter series; slice hyperholomorphic).

Important cases not touched upon in this talk:

Grassmann algebra, Clifford algebra and poly-slice analytic functions,
ternary algebras, bicomplex numbers and others.
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Two highlights:

The spectral theorem holds for Hermitian quaternionic matrices: if
M ∈Hn×n and such that H = H∗,

M = UDU∗

with D diagonal with real entries and U unitary

One has (Fueter, 1936) three non-commuting variables which are
analytic.
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Positive definite functions:

The function (kernel) k(z ,w) is positive definite on Ω (misleading but
accepted terminology) if for all choices of N ∈N, z1, . . . , zN ∈ Ω and
c1, . . . , cN ∈ C we have:

N∑
i,j=1

cik(zi , zj)cj ≥ 0.

For every choice of N ∈N and of points z1, . . . , zN ∈ Ω the matrix

k(z1, z1) k(z1, z2) · · · k(z1, zN)
k(z2, z1) k(z2, z2) · · · k(z2, zN)

...
...

...
...

...
...

k(zN , z1) k(zN , z2) · · · k(zN , zN)

 ≥ 0.

Negative squares:

One now asks that all the above matrices has at most κ <∞ strictly
negative eigenvalues (same κ for all matrices).

Remark:

These definitions make sense for quaternions since the spectral theorem
holds for Hermitian quaternionic matrices.
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Example: Bochner’s theorem

Let Ω = R and K (x , y) = F (x − y) be a complex-valued continuous
function which satisfies

N∑
i,j=0

F (xi − xj)ci c̄j ≥ 0 ∀N ∀ci ∈ C ∀x1, x2, ..., xn ∈ R

Then there exists a positive measure µ such that

F (u) =

∫
R

e−ixudµ(x)

F (u) is the Fourier transform of a positive measure.
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∫
R

e itu

1 + u2
du = πe−|t|, t ∈ R,∫

R

e itue−|u|du =
2

1 + t2

Examples

The functions

e−|t−s| and
1

1 + (t − s)2

are positive definite on the real line.

Gaussian: ∫
R

e−
u2

2 e−iutdu =
√

2πe−
t2

2 .

The function e−
(t−s)2

2 is positive definite on the real line. Can also see it
via

e−
(t−s)2

2 = e−
t2

2 etse−
s2

2

Daniel Alpay Quaternions and Reproducing kernel spaces



Reproducing kernel Hilbert spaces.

Definition: A reproducing kernel Hilbert space H is a Hilbert space of
functions on a set (say Ω), for which the point evaluations are bounded.

By Riesz theorem, ∃kz ∈ H (notation: k(·, z)), called the reproducing
kernel, such that

f (z) = 〈f , kz〉H, ∀f ∈ H.

RK and positive definite functions

There is a one-to-one correspondence between positive definite functions
and reproducing kernel Hilbert spaces.

There is a one-to-one correspondence between functions with a finite
number of negative squares and reproducing kernel Pontryagin spaces.

There is a onto (but not one-to-one) correspondence between difference
of positive definite functions and reproducing kernel Krein spaces
(Laurent Schwartz, 1964).

Daniel Alpay Quaternions and Reproducing kernel spaces



Definition:

The function k(z ,w) defined for z ,w ∈ Ω is factorizable if there is a
pre-Hilbert space H and a H-valued function z 7→ hz such that

k(z ,w) = 〈hw , hz〉H

Theorem:

A function is factorizable if and only if it is positive definite.

Link with machine learning and support vector machines:

Usually z ∈ Rn is called the feature vector and hz is called the feature
map and belongs to a larger space, which allows separation of data. One
works with the kernel k(z ,w) and not with hz to make the computations.
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Stochastic processes.

There is a one-to-one correspondence between covariance of Gaussian
centered processes and positive definite functions.

Example.

Not always easy to recognize if a function is positive definite. Is
|t|2H + |s|2H − |t − s|2H (H ∈ (0, 1)) positive definite on the real line?

|t|2H + |s|2H − |t − s|2H =

= cH

∫ ∞
0

(1− cos(tu))(1− cos(su)) + sin(tu) sin(su)

u2
du

u2H−1
,

where cH > 0 depends only on H.

It is the covariance function of the fractional Brownian motion (H is the
Hurst parameter; Brownian motion for H = 1/2).
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Remarks:

Not every Hilbert space of functions is a reproducing kernel Hilbert space.

Counterexamples involve the axiom of choice and the fact that a vector
space basis in an infinite dimensional Hilbert space is uncountable.

Donoghue and Masani (1983) A class of invalid assertions concerning
function Hilbert spaces:

Given an infinite dimensional Hilbert space (H, 〈·, ·〉H) and x0 6= 0 ∈ H.
The map x 7→ 〈x , x0〉H is continuous with respect to 〈·, ·〉H, but:

There exists an inner product (·, ·) on H for which H is still a Hilbert
space but the map x 7→ 〈x , x0〉H is not continuous with respect to (·, ·).
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The Bargmann-Fock-Segal space F :

The space of entire functions f such that (s = x + iy ∈ C)

〈f , f 〉F =
1

π

∫∫
C

|f (s)|2e−|s|
2

dxdy <∞

Then, kz : s 7→ esz ∈ F and one has the reproducing kernel property:.

〈f , kz〉F = f (z), ∀z ∈ C

Reproducing kernel:

Point evaluations are bounded.

z 7→ ezw ∈ F is the reproducing kernel.
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Analytic characterization:

〈zn, zm〉 =
1

π

∫∫
C

znzme−|z|
2

dxdy = n!δn,m, n,m ∈N0,

with δn,m being the Kronecker symbol. So:

f (z) =
∞∑
n=0

anz
n ∈ F ⇐⇒

∞∑
n=0

n!|an|2 <∞.

Property:

The Fock space can be characterized as the unique space of entire
functions where the adjoint of differentiation is multiplication by z .

∂∗ = Mz and M∗z = ∂.

Motivation from quantum mechanics. Work of Fock in 1928.
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Bargmann transform:

The map

B(f )(z) =
1
4
√
π
e−

z2

2

∫
R

f (u)e−
u2

2 +
√
2zudu

is unitary from L2(R, du) onto the Fock space

Properties:

In the Fock space, annihilation operator is ∂ and creation operator is Mz .
With F (z) = B(f )(z), one has:

(B(uf (u)))(z) =
F ′(z) + zF (z)√

2
(image of the position operator)

(B(f ′(u)))(z) =
F ′(z)− zF (z)√

2
(image of the momentum operator)
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Summary (and roadmap for study of other spaces):

1 We have a Hilbert space of functions.

2 Point evaluations are bounded.

3 Characterized by a function of two variables, k(z ,w) = ezw .

4 It has geometric and analytic characterizations.

5 It has an important motivation (here, quantum mechanics; has also
applications in signal processing).

6 It can be characterized in terms of a transform.

Other important examples (just name dropping ...):

Arveson space, de Branges-Rovnyak spaces, Hardy space and applications
to signal processing and the theory of linear systems.
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The skew–field of quaternions H:

elements of the form

x = x0e0 + x1e1 + x2e2 + x3e3,

where the xi are real and where e0, e1, e2, e3 satisfy the rules of
multiplication from the Cayley table:

↗ e0 e1 e2 e3
e0 e0 e1 e2 e3
e1 e1 −e0 e3 −e2
e2 e2 −e3 −e0 e1
e3 e3 e2 −e1 −e0
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Split-quaternions:

k1, k2 and i the basis of the split-quaternions, with multiplication table

↗ 1 k1 k2 i
1 1 k1 k2 i
k1 k1 1 i k2
k2 k2 −i 1 −k1
i i −k2 k1 −1
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Construction:

To build H, take

e0 =

(
1 0
0 1

)
, e1 =

(
0 1
−1 0

)
, e2 =

(
0 i
i 0

)
and e3 = e1e2.

H =

{(
z1 z2
−z2 z1

)
, z1, z2 ∈ C

}

Split quaternions:

HR =

{(
z1 z2
z2 z1

)
, z1, z2 ∈ C

}
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To go to hypercomplex settings:

Need the notion of positivity. In the quaternionic setting easy. Also the
spectral theorem for Hermitian matrices hold, and so can define negative
squares. Can also use the map

χ(A + e3B) =

(
A B
−B A

)
.

Remark:

In the split-quaternionic setting, consider the map

ψ(A + k1B) =

(
A B
B A

)
Two natural adjoints there, namely corresponding to ψ(M)∗ and

J0ψ(M)∗J0, J0 =

(
I 0
0 −I

)
(indefinite inner product on the coefficient

space). The second one will lead to reproducing kernel Krein spaces.
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Recall that an analytic function is a complex–valued function solution of
∂f = 0 with ∂ = ∂

∂x + i ∂∂y . Furthermore, with ∂ = ∂
∂x − i ∂∂y we have:

∂∂ = ∂∂ = ∆R2 .

Hyper–analytic functions:

Left hyper–analytic (or hyper–holomorphic) functions are
quaternionic–valued functions solutions of Df = 0 where

D =
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
.

(we will say hyper–analytic rather than left hyper–analytic).

With

D =
∂

∂x0
− e1

∂

∂x1
− e2

∂

∂x2
− e3

∂

∂x3

we have the factorization of the Laplacian:

DD = DD = ∆R4 .
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We identify H = C2 via e1 = i and

x = z1 + z2e2

with z1 = x0 + ix1 and z2 = x2 + ix3. Note that for z ∈ C,

ze2 = e2z .

Write f (x) = f1(z1, z2) + e2f2(z1, z2).
Hyper–analyticity is equivalent to the Cauchy–Riemann type equations:

∂f1
∂z1

=
∂f2
∂z2

,

∂f1
∂z2

= − ∂f2
∂z1

.
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1 The product of two hyper–analytic functions need not be
hyper–analytic.

2 The quaternionic variable

x = x0 + x1e1 + x2e2 + x3e3

is not hyper–analytic (it is slice hyper-analytic).

Fueter variables:

The functions ζ`(x) = xj − e`x0 ` = 1, 2, 3 are hyper–analytic
and called the Fueter (or hyper–analytic) variables.

They were introduced by Fueter (1936). They do not
commute and do not play the role of independent variables,
but z` “corresponds” to ζ` in some sense.
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Gleason’s problem for hyper–analytic functions (after A-Shapiro-Volok,
JFA 2005):

f (x)− f (0) =
∑3
`=1(x` − x0e`)

∫ 1

0
∂
∂x`

f (tx)dt.

The chain rule gives

d

dt
f (tx) =

3∑
`=0

x`
∂f

∂x`
(tx).

Since the function is left hyper–holomorphic,

∂f

∂x0
= −e1

∂

∂x1
f − e2

∂

∂x2
f − e3

∂

∂x3
f .

Replacing ∂f
∂x0

by this expression we obtain

d

d t
f (tx) =

3∑
`=1

(x` − x0e`)
∂f

∂x`
(tx).
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Fueter series:

Iterating the formula

f (x)− f (0) =
3∑
`=1

(x` − x0e`)

∫ 1

0

∂

∂x`
f (tx)dt

one obtains the development of a left hyper–analytic function in a series
of Fueter polynomials.

f (x) =
∑
ν∈N0

3 ζν(x)fν , fν ∈H,

where ζν(x) = ζ1(x)×ν1 × ζ2(x)×ν2 × ζ3(x)×ν3 and the symmetrized
product of a1, . . . , an ∈H is defined by

a1 × a2 × · · · × an = 1
n!

∑
σ∈Sn

aσ(1)aσ(2) · · · aσ(n)

where Sn is the set of all permutations of the set {1, ..., n}.

Same method works for split quaternions and ternary algebras. General
approach in A-Paiva-Struppa, Israel Journal Math, 2020.
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zn = zn11 zn22 · · · in SCV is replaced by ζ×α.

Definition (F. Sommen, 1988):

The Cauchy–Kovalevskaya product f � g of the hyper–analytic functions

f =
∑
ν∈N0

3

ζν fν , g =
∑
ν∈N0

3

ζνgν

is defined by (convolution on the coefficients)

f � g =
∑
η∈N0

3 ζη
∑

0≤ν≤η fνgη−ν .

It is by construction hyper–analytic at the origin.

Why is it called Cauchy–Kovalevskaya product? Other definition in terms
of the Cauchy–Kovalevskaya extension theorem from PDEs.
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Theorem (the quaternionic Arveson space):

The function

ky (x) = (1− ζ1(x)ζ1(y)− ζ2(x)ζ2(y)− ζ3(x)ζ3(y))−�

=
∑
ν∈N0

3

|ν|!
ν!
ζν(x)ζν(y)

is positive definite in the ellipsoid
Ω =

{
x ∈H | 3x20 + x21 + x22 + x23 < 1

}
. The reproducing kernel

right-Hilbert space H(k) with reproducing kernel ky (x) is the set of
functions of the form

f (x) =
∞∑
n=0

∑
|ν|=n

ζν(x)fν ,

endowed with the H-valued inner product

〈f , g〉 =
∑
ν∈N0

3

ν!

|ν|!
gν fν .
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Identity:

Let
Mζn f = ζn � f , n = 1, 2, 3
and let
C : H(k) 7→H be the operator of evaluation at the origin: Cf = f (0).
Then,

I −Mζ1M∗ζ1 −Mζ2M∗ζ2 −Mζ3M∗ζ3 = C∗C

and, with Rnf (x) =
∫ 1

0
∂
∂x`

f (tx)dt,

M∗ζj = Rj .
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de Branges Rovnyak spaces:

Function s(x), left hyperholomorphic in Ω, is a Schur function if the C-K
multiplication operator

Ms f = s � f

is a contraction from H(k) into itself.
Hence s(x) is a Schur function iff the kernel

ks(x , y) = ((I −MsM
∗
s )ky )(x)

=
∑
ν∈N3

0

|ν|!
ν!

(
ζν(x)ζν(y)− (s � ζν)(x)(s � ζν)(y)

)
is positive definite.

Blaschke factor (after Rudin):

Let a ∈ Ω =
{
x ∈H | 3x20 + x21 + x22 + x23 < 1

}
.

Ba = (1− ζ(a)ζ(a)∗)
1
2 (1− ζζ(a)∗)−� � (ζ − ζ(a)) (I − ζ(a)∗ζ(a))−

1
2
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k1, k2 and i the basis of the split-quaternions, with multiplication table

↗ 1 k1 k2 i
1 1 k1 k2 i
k1 k1 1 i k2
k2 k2 −i 1 −k1
i i −k2 k1 −1

Define

∇+
R =

∂

∂x0
− k1

∂

∂x1
− k2

∂

∂x2
+ i

∂

∂x3
,

and

∇R =
∂

∂x0
+ k1

∂

∂x1
+ k2

∂

∂x2
− i

∂

∂x3

∇+
R∇R = ∇R∇+

R =
∂2

∂x20
− ∂2

∂x21
− ∂2

∂x22
+

∂2

∂x23
.

Solutions of the ultra-hyperbolic wave equation ∇+
R∇Rf = 0 need not be

smooth, let-alone real-analytic. A HR-valued real-analytic function f will
be called left-regular if ∇+

Rf = 0.
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Gleason type decomposition.

Let

(Ruf )(x) =

∫ 1

0

∂

∂xu
f (tx)dt, u = 0, 1, 2, 3.

Let f be a left-regular function in a neighborhood of the origin. Then

f (x)− f (0) =
3∑

u=1

ζu(x)(Ruf )(x).

with

ζ1(x) = x1 + x0k1

ζ2(x) = x2 + x0k2

ζ3(x) = x3 − x0i.

(left-regular; these functions are in fact the building blocks of all
functions left-regular in a neighborhood of the origin).

Daniel Alpay Quaternions and Reproducing kernel spaces



Slice hyperholomorphic functions.

Let Ω ⊆H be an open set and let f : Ω→H be a real differentiable
function. Let I ∈ S =

{
q ∈H; q2 = −1

}
and let fI be the restriction of

f to the complex plane CI := R+ IR passing through 1 and I and
denote by x + Iy an element on CI . We say that f is a left slice regular
function if, for every I ∈ S, we have:

1

2

(
∂

∂x
+ I

∂

∂y

)
fI (x + Iy) = 0.

Example:

The quaternionic variables and its powers are slice hyperholomorphic.

Product:

Pointwise product does not keep slice hyperholomorphy, but there is
another product, which reduces to convolution on coefficients for power
series, which keeps slice hyperholomorphy.
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Let V be a two sided quaternionic linear space, B(V ) denote the space of
bounded right linear operators.

Definition

Let A ∈ B(V ). We define the S-spectrum σS(A) as
σS(A) = {r ∈H : A2 − 2Re(r)A + |r |2I is not invertible in B(V )},
and the S-resolvent set ρS(A) =H \ σS(A).

Definition

Let A ∈ B(V ) and r ∈ ρS(A). We define the right S-resolvent operator as
S−1R (r ,A) := −(A− I r)(A2 − 2Re(r)A + |r |2I )−1.

Proposition

Let A ∈ B(V ). Then, for |p| ‖A‖ < 1 we have

∞∑
n=0

pnAn = p−1S−1R (p−1,A) = (I − p̄A)(|p|2A2 − 2Re(p)A + I )−1.
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Let H2(B) be the Hardy space of the unit ball B ⊂H:

H2(B) = {f (p) =
∑
n≥0

pnan |
∑
n≥0

|an|2 <∞}

de Branges Rovnyak spaces.

Let S : B→H. The following are equivalent:
(1) S is a Schur function.
(2) The operator MS of slice regular left multiplication by S

MS : f 7→ S ? f

is a contraction on H2(B).
(3) The kernel

KS(p, q) =
∞∑
k=0

pk(1− S(p)S(q))q̄k

is positive on B× B.
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