Quaternions and Reproducing kernel spaces

Daniel Alpay Foster G. and Mary McGaw Professorship in Mathematical Sciences Chapman University, Orange, CA

JMM 2023 Boston AMS Session on Quaternions

Outline of the talk:

- Positive definite functions and examples.
- Reproducing kernel Hilbert spaces and reproducing kernel Pontryagin spaces (Krein spaces will also appear).
- Some important examples (complex setting). Bargmann-Fock-Segal space, Drury-Arveson space, de Branges Rovnyak space.
- Why one can consider the quaternionic setting. Different kinds of analyticity.
- Some examples from the quaternionic setting (hypercomplex and Fueter series; slice hyperholomorphic).

Important cases not touched upon in this talk:

Grassmann algebra, Clifford algebra and poly-slice analytic functions, ternary algebras, bicomplex numbers and others.

Two highlights:

• The spectral theorem holds for Hermitian quaternionic matrices: if $M \in \mathbb{H}^{n \times n}$ and such that $H = H^*$,

$$M = UDU^*$$

with D diagonal with real entries and U unitary

• One has (Fueter, 1936) three non-commuting variables which are analytic.

Positive definite functions:

The function (kernel) k(z, w) is positive definite on Ω (*misleading but accepted terminology*) if for all choices of $N \in \mathbb{N}$, $z_1, \ldots, z_N \in \Omega$ and $c_1, \ldots, c_N \in \mathbb{C}$ we have:

$$\sum_{i,j=1}^N \overline{c_i} k(z_i, z_j) c_j \ge 0.$$

For every choice of $N \in \mathbb{N}$ and of points $z_1, \ldots, z_N \in \Omega$ the matrix

$$egin{pmatrix} k(z_1,z_1) & k(z_1,z_2) & \cdots & k(z_1,z_N) \ k(z_2,z_1) & k(z_2,z_2) & \cdots & k(z_2,z_N) \ dots & dots & dots & dots \ dots & dots & dots & dots \ dots & dots & dots & dots \ k(z_N,z_1) & k(z_N,z_2) & \cdots & k(z_N,z_N) \end{pmatrix} \geq 0.$$

Negative squares:

One now asks that all the above matrices has at most $\kappa < \infty$ strictly negative eigenvalues (same κ for *all* matrices).

Example: Bochner's theorem

Let $\Omega = \mathbb{R}$ and K(x, y) = F(x - y) be a complex-valued continuous function which satisfies

$$\sum_{i,j=0}^{N} F(x_i - x_j) c_i \bar{c_j} \geq 0 \quad \forall N \quad \forall c_i \in \mathbb{C} \quad \forall x_1, x_2, ..., x_n \in \mathbb{R}$$

Then there exists a positive measure μ such that

$$F(u) = \int_{\mathbb{R}} e^{-ixu} d\mu(x)$$

F(u) is the Fourier transform of a positive measure.

$$\begin{split} &\int_{\mathbb{R}} \frac{e^{itu}}{1+u^2} du &= \pi e^{-|t|}, \quad t \in \mathbb{R}, \\ &\int_{\mathbb{R}} e^{itu} e^{-|u|} du &= \frac{2}{1+t^2} \end{split}$$

Examples

The functions

$$e^{-|t-s|}$$
 and $\frac{1}{1+(t-s)^2}$

are positive definite on the real line.

Gaussian:

$$\int_{\mathbb{R}} e^{-\frac{u^2}{2}} e^{-iut} du = \sqrt{2\pi} e^{-\frac{t^2}{2}}.$$

The function $e^{-\frac{(t-s)^2}{2}}$ is positive definite on the real line. Can also see it via

$$e^{-\frac{(t-s)^2}{2}} = e^{-\frac{t^2}{2}}e^{ts}e^{-\frac{s^2}{2}}$$

Reproducing kernel Hilbert spaces.

Definition: A reproducing kernel Hilbert space \mathcal{H} is a Hilbert space of **functions** on a set (say Ω), for which the point evaluations are bounded.

By Riesz theorem, $\exists k_z \in \mathcal{H}$ (notation: $k(\cdot, z)$), called the **reproducing** kernel, such that

$$f(z) = \langle f, k_z \rangle_{\mathcal{H}}, \quad \forall f \in \mathcal{H}.$$

RK and positive definite functions

There is a one-to-one correspondence between positive definite functions and reproducing kernel Hilbert spaces.

There is a one-to-one correspondence between functions with a finite number of negative squares and reproducing kernel Pontryagin spaces.

There is a onto (but not one-to-one) correspondence between difference of positive definite functions and reproducing kernel Krein spaces (Laurent Schwartz, 1964).

Definition:

The function k(z, w) defined for $z, w \in \Omega$ is factorizable if there is a pre-Hilbert space \mathcal{H} and a \mathcal{H} -valued function $z \mapsto h_z$ such that

$$k(z,w) = \langle h_w, h_z \rangle_{\mathcal{H}}$$

Theorem:

A function is factorizable if and only if it is positive definite.

Link with machine learning and support vector machines:

Usually $z \in \mathbb{R}^n$ is called the feature vector and h_z is called the feature map and belongs to a larger space, which allows separation of data. One works with the kernel k(z, w) and not with h_z to make the computations.

Stochastic processes.

There is a one-to-one correspondence between covariance of Gaussian centered processes and positive definite functions.

Example.

Not always easy to recognize if a function is positive definite. Is $|t|^{2H} + |s|^{2H} - |t - s|^{2H}$ ($H \in (0, 1)$) positive definite on the real line?

$$\begin{split} |t|^{2H} + |s|^{2H} - |t-s|^{2H} = \\ &= c_H \int_0^\infty \frac{(1-\cos(tu))(1-\cos(su)) + \sin(tu)\sin(su)}{u^2} \frac{du}{u^{2H-1}}, \end{split}$$

where $c_H > 0$ depends only on H.

It is the covariance function of the fractional Brownian motion (*H* is the Hurst parameter; Brownian motion for H = 1/2).

Remarks:

Not every Hilbert space of functions is a reproducing kernel Hilbert space.

Counterexamples involve the axiom of choice and the fact that a vector space basis in an infinite dimensional Hilbert space is uncountable.

Donoghue and Masani (1983) A class of invalid assertions concerning function Hilbert spaces:

Given an infinite dimensional Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ and $x_0 \neq 0 \in \mathcal{H}$. The map $x \mapsto \langle x, x_0 \rangle_{\mathcal{H}}$ is continuous with respect to $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, but:

There exists an inner product (\cdot, \cdot) on \mathcal{H} for which \mathcal{H} is still a Hilbert space but the map $x \mapsto \langle x, x_0 \rangle_{\mathcal{H}}$ is not continuous with respect to (\cdot, \cdot) .

The Bargmann-Fock-Segal space \mathcal{F} :

The space of entire functions f such that $(s = x + iy \in \mathbb{C})$

$$\langle f,f
angle_{\mathcal{F}} = rac{1}{\pi} \iint_{\mathbb{C}} |f(s)|^2 e^{-|s|^2} dx dy < \infty$$

Then, k_z : $s \mapsto e^{s\overline{z}} \in \mathcal{F}$ and one has the reproducing kernel property:.

$$\langle f, k_z \rangle_{\mathcal{F}} = f(z), \quad \forall z \in \mathbb{C}$$

Reproducing kernel:

Point evaluations are bounded.

 $z \mapsto e^{z\overline{w}} \in \mathcal{F}$ is the reproducing kernel.

Analytic characterization:

$$\langle z^n, z^m \rangle = \frac{1}{\pi} \iint_{\mathbb{C}} z^n \overline{z^m} e^{-|z|^2} dx dy = n! \delta_{n,m}, \quad n, m \in \mathbb{N}_0,$$

with $\delta_{n,m}$ being the Kronecker symbol. So:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{F} \iff \sum_{n=0}^{\infty} n! |a_n|^2 < \infty.$$

Property:

The Fock space can be characterized as the unique space of entire functions where the adjoint of differentiation is multiplication by z.

$$\partial^* = M_z$$
 and $M_z^* = \partial$.

Motivation from quantum mechanics. Work of Fock in 1928.

Bargmann transform:

The map

$$B(f)(z) = \frac{1}{\sqrt[4]{\pi}} e^{-\frac{z^2}{2}} \int_{\mathbb{R}} f(u) e^{-\frac{u^2}{2} + \sqrt{2}zu} du$$

is unitary from $L^2(\mathbb{R}, du)$ onto the Fock space

Properties:

In the Fock space, annihilation operator is ∂ and creation operator is M_z . With F(z) = B(f)(z), one has:

$$(B(uf(u)))(z) = \frac{F'(z) + zF(z)}{\sqrt{2}} \quad \text{(image of the position operator)}$$
$$(B(f'(u)))(z) = \frac{F'(z) - zF(z)}{\sqrt{2}} \quad \text{(image of the momentum operator)}$$

Summary (and roadmap for study of other spaces):

- We have a Hilbert space of functions.
- Point evaluations are bounded.
- Subscription Of two variables, $k(z, w) = e^{z\overline{w}}$.
- It has geometric and analytic characterizations.
- It has an important motivation (here, quantum mechanics; has also applications in signal processing).
- It can be characterized in terms of a transform.

Other important examples (just name dropping ...):

Arveson space, de Branges-Rovnyak spaces, Hardy space and applications to signal processing and the theory of linear systems.

The skew-field of quaternions \mathbb{H} :

elements of the form

$$x = x_0 \mathbf{e}_0 + x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3,$$

where the x_i are real and where e_0, e_1, e_2, e_3 satisfy the rules of multiplication from the Cayley table:

\nearrow	e ₀	e ₁	e ₂	e ₃
e ₀	e ₀	e_1	e ₂	e ₃
e_1	e_1	$-e_0$	e ₃	$-e_2$
e ₂	e ₂	$-e_3$	$-e_0$	e_1
e ₃	e ₃	e ₂	$-e_1$	$-e_0$

Split-quaternions:

 $\mathsf{k}_1,\mathsf{k}_2$ and i the basis of the split-quaternions, with multiplication table

\nearrow	1	k_1	k ₂	i
1	1	k_1	k_2	i
k_1	k_1	1	i	k_2
k ₂	k ₂	—i	1	$-k_1$
i	i	$-k_2$	k_1	-1

Construction:

To build \mathbb{H} , take

$$\mathbf{e}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{e}_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{e}_3 = \mathbf{e}_1 \mathbf{e}_2.$$

$$\mathbb{H}=\left\{egin{pmatrix} z_1 & z_2 \ -\overline{z_2} & \overline{z_1} \end{pmatrix}, \quad z_1,z_2\in\mathbb{C}
ight\}$$

Split quaternions:

$$\mathbb{H}_{\mathbb{R}}=\left\{egin{pmatrix} z_1 & z_2 \ \overline{z_2} & \overline{z_1} \end{pmatrix}, \quad z_1,z_2\in\mathbb{C}
ight\}$$

To go to hypercomplex settings:

Need the notion of positivity. In the quaternionic setting easy. Also the spectral theorem for Hermitian matrices hold, and so can define negative squares. Can also use the map

$$\chi(A + e_3B) = \begin{pmatrix} A & \overline{B} \\ -B & \overline{A} \end{pmatrix}.$$

Remark:

In the split-quaternionic setting, consider the map

$$\psi(A + k_1 B) = \begin{pmatrix} A & \overline{B} \\ B & \overline{A} \end{pmatrix}$$

Two natural adjoints there, namely corresponding to $\psi(M)^*$ and $J_0\psi(M)^*J_0$, $J_0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$ (indefinite inner product on the coefficient space). The second one will lead to reproducing kernel Krein spaces.

Recall that an analytic function is a complex-valued function solution of $\partial f = 0$ with $\partial = \frac{\partial}{\partial x} + i \frac{\partial}{\partial y}$. Furthermore, with $\overline{\partial} = \frac{\partial}{\partial x} - i \frac{\partial}{\partial y}$ we have: $\partial \overline{\partial} = \overline{\partial} \partial = \Delta_{\mathbb{R}^2}$.

Hyper-analytic functions:

Left hyper–analytic (or hyper–holomorphic) functions are quaternionic–valued functions solutions of Df = 0 where

$$D = \frac{\partial}{\partial x_0} + \mathbf{e}_1 \frac{\partial}{\partial x_1} + \mathbf{e}_2 \frac{\partial}{\partial x_2} + \mathbf{e}_3 \frac{\partial}{\partial x_3}$$

(we will say hyper-analytic rather than left hyper-analytic).

With

$$\overline{D} = \frac{\partial}{\partial x_0} - e_1 \frac{\partial}{\partial x_1} - e_2 \frac{\partial}{\partial x_2} - e_3 \frac{\partial}{\partial x_3}$$

we have the factorization of the Laplacian:

$$D\overline{D} = \overline{D}D = \Delta_{\mathbb{R}^4}.$$

We identify $\mathbb{H} = \mathbb{C}^2$ via $e_1 = i$ and

$$x = z_1 + z_2 e_2$$

with $z_1 = x_0 + ix_1$ and $z_2 = x_2 + ix_3$. Note that for $z \in \mathbb{C}$,

$$ze_2 = e_2\overline{z}.$$

Write $f(x) = f_1(z_1, z_2) + e_2 f_2(z_1, z_2)$.

Hyper-analyticity is equivalent to the Cauchy-Riemann type equations:

$$\frac{\partial f_1}{\partial \overline{z_1}} = \frac{\partial f_2}{\partial \overline{z_2}},$$

$$\frac{\partial f_1}{\partial z_2} = -\frac{\partial f_2}{\partial z_1}$$

- The product of two hyper-analytic functions need not be hyper-analytic.
- O The quaternionic variable

$$x = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3$$

is not hyper-analytic (it is slice hyper-analytic).

Fueter variables:

The functions $\zeta_{\ell}(x) = x_j - e_{\ell}x_0$ $\ell = 1, 2, 3$ are hyper-analytic and called the Fueter (or hyper-analytic) variables.

They were introduced by Fueter (1936). They do not commute and do not play the role of independent variables, but z_{ℓ} "corresponds" to ζ_{ℓ} in some sense.

Gleason's problem for hyper–analytic functions (after A-Shapiro-Volok, JFA 2005):

$$f(x) - f(0) = \sum_{\ell=1}^{3} (x_{\ell} - x_0 \mathbf{e}_{\ell}) \int_0^1 \frac{\partial}{\partial x_{\ell}} f(tx) dt.$$

The chain rule gives

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t\mathbf{x}) = \sum_{\ell=0}^{3} x_{\ell} \frac{\partial f}{\partial x_{\ell}}(t\mathbf{x}).$$

Since the function is left hyper-holomorphic,

$$\frac{\partial f}{\partial x_0} = -\mathbf{e}_1 \frac{\partial}{\partial x_1} f - \mathbf{e}_2 \frac{\partial}{\partial x_2} f - \mathbf{e}_3 \frac{\partial}{\partial x_3} f$$

Replacing $\frac{\partial f}{\partial x_0}$ by this expression we obtain

$$\frac{\mathrm{d}}{\mathrm{d} t}f(tx) = \sum_{\ell=1}^{3} (x_{\ell} - x_{0} \mathbf{e}_{\ell}) \frac{\partial f}{\partial x_{\ell}}(tx).$$

Fueter series:

Iterating the formula

$$f(x) - f(0) = \sum_{\ell=1}^{3} (x_{\ell} - x_0 e_{\ell}) \int_0^1 \frac{\partial}{\partial x_{\ell}} f(tx) dt$$

one obtains the development of a left hyper-analytic function in a series of Fueter polynomials.

$$f(x) = \sum_{\nu \in \mathbb{N}_0^3} \zeta^{\nu}(x) f_{\nu}, \qquad f_{\nu} \in \mathbb{H},$$

where $\zeta^{\nu}(x) = \zeta_1(x)^{\times \nu_1} \times \zeta_2(x)^{\times \nu_2} \times \zeta_3(x)^{\times \nu_3}$ and the symmetrized product of $a_1, \ldots, a_n \in \mathbb{H}$ is defined by

$$a_1 \times a_2 \times \cdots \times a_n = \frac{1}{n!} \sum_{\sigma \in S_n} a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}$$

where S_n is the set of all permutations of the set $\{1, ..., n\}$.

Same method works for split quaternions and ternary algebras. General approach in A-Paiva-Struppa, Israel Journal Math, 2020.

$$z^n = z_1^{n_1} z_2^{n_2} \cdots$$
 in SCV is replaced by $\zeta^{ imes lpha}$

Definition (F. Sommen, 1988):

The Cauchy–Kovalevskaya product $f \odot g$ of the hyper–analytic functions

$$f = \sum_{\nu \in \mathbb{N}_0^3} \zeta^{\nu} f_{\nu}, \ g = \sum_{\nu \in \mathbb{N}_0^3} \zeta^{\nu} g_{\nu}$$

is defined by (convolution on the coefficients)

$$f \odot g = \sum_{\eta \in \mathbb{N}_0^3} \zeta^{\eta} \sum_{0 \le \nu \le \eta} f_{\nu} g_{\eta - \nu}.$$

It is by construction hyper-analytic at the origin.

Why is it called Cauchy–Kovalevskaya product? Other definition in terms of the Cauchy–Kovalevskaya extension theorem from PDEs.

Theorem (the quaternionic Arveson space):

The function

$$k_{y}(x) = (1 - \zeta_{1}(x)\overline{\zeta_{1}(y)} - \zeta_{2}(x)\overline{\zeta_{2}(y)} - \zeta_{3}(x)\overline{\zeta_{3}(y)})^{-\odot}$$
$$= \sum_{\nu \in \mathbb{N}_{0}^{3}} \frac{|\nu|!}{\nu!} \zeta^{\nu}(x)\overline{\zeta^{\nu}(y)}$$

is positive definite in the ellipsoid $\Omega = \left\{ x \in \mathbb{H} \mid 3x_0^2 + x_1^2 + x_2^2 + x_3^2 < 1 \right\}.$ The reproducing kernel right-Hilbert space H(k) with reproducing kernel $k_y(x)$ is the set of functions of the form

$$f(x) = \sum_{n=0}^{\infty} \sum_{|\nu|=n} \zeta^{\nu}(x) f_{\nu},$$

endowed with the ${\mathbb H}\text{-valued}$ inner product

$$\langle f,g
angle = \sum_{
u\in\mathbb{N}_0^3}rac{
u!}{|
u|!}\overline{g_{
u}}f_{
u}.$$

Identity:

Let

$$\mathcal{M}_{\zeta_n}f=\zeta_n\odot f,\ n=1,2,3$$

and let

 $C: H(k) \mapsto \mathbb{H}$ be the operator of evaluation at the origin: Cf = f(0). Then,

$$I - \mathcal{M}_{\zeta_1} \mathcal{M}_{\zeta_1}^* - \mathcal{M}_{\zeta_2} \mathcal{M}_{\zeta_2}^* - \mathcal{M}_{\zeta_3} \mathcal{M}_{\zeta_3}^* = \mathcal{C}^* \mathcal{C}$$

and, with $\mathcal{R}_n f(x) = \int_0^1 \frac{\partial}{\partial x_\ell} f(tx) dt$,

$$\mathcal{M}^*_{\zeta_j} = \mathcal{R}_j.$$

de Branges Rovnyak spaces:

Function s(x), left hyperholomorphic in Ω , is a Schur function if the C-K multiplication operator

$$M_s f = s \odot f$$

is a contraction from $\mathcal{H}(k)$ into itself. Hence s(x) is a Schur function iff the kernel

$$k_{\mathfrak{s}}(x,y) = ((I - M_{\mathfrak{s}}M_{\mathfrak{s}}^{*})k_{y})(x)$$

= $\sum_{\nu \in \mathbb{N}_{0}^{3}} \frac{|\nu|!}{\nu!} \left(\zeta^{\nu}(x)\overline{\zeta^{\nu}(y)} - (\mathfrak{s} \odot \zeta^{\nu})(x)\overline{(\mathfrak{s} \odot \zeta^{\nu})(y)} \right)$

is positive definite.

Blaschke factor (after Rudin):

Let
$$a \in \Omega = \left\{ x \in \mathbb{H} \mid 3x_0^2 + x_1^2 + x_2^2 + x_3^2 < 1 \right\}.$$

$$B_{\mathsf{a}} = (1 - \zeta(\mathsf{a})\zeta(\mathsf{a})^*)^{\frac{1}{2}}(1 - \zeta\zeta(\mathsf{a})^*)^{-\odot} \odot (\zeta - \zeta(\mathsf{a})) (I - \zeta(\mathsf{a})^*\zeta(\mathsf{a}))^{-\frac{1}{2}}$$

 k_1,k_2 and i the basis of the split-quaternions, with multiplication table

\nearrow	1	k ₁	k ₂	i
1	1	k ₁	k ₂	i
k ₁	k ₁	1	i	k ₂
k ₂	k ₂	—i	1	$-k_1$
i	i	$-k_2$	k_1	-1

Define

$$\nabla_{\mathbb{R}}^{+} = \frac{\partial}{\partial x_{0}} - \mathsf{k}_{1} \frac{\partial}{\partial x_{1}} - \mathsf{k}_{2} \frac{\partial}{\partial x_{2}} + \mathsf{i} \frac{\partial}{\partial x_{3}},$$

and

$$\nabla_{\mathbb{R}} = \frac{\partial}{\partial x_0} + k_1 \frac{\partial}{\partial x_1} + k_2 \frac{\partial}{\partial x_2} - i \frac{\partial}{\partial x_3}$$
$$\nabla_{\mathbb{R}}^+ \nabla_{\mathbb{R}} = \nabla_{\mathbb{R}} \nabla_{\mathbb{R}}^+ = \frac{\partial^2}{\partial x_0^2} - \frac{\partial^2}{\partial x_1^2} - \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}.$$

Solutions of the ultra-hyperbolic wave equation $\nabla^+_{\mathbb{R}} \nabla_{\mathbb{R}} f = 0$ need not be smooth, let-alone real-analytic. A H_R-valued real-analytic function f will be called left-regular if $\nabla^+_{\mathbb{R}} f = 0$.

Gleason type decomposition.

Let

$$(R_u f)(x) = \int_0^1 \frac{\partial}{\partial x_u} f(tx) dt, \quad u = 0, 1, 2, 3.$$

Let f be a left-regular function in a neighborhood of the origin. Then

$$f(x) - f(0) = \sum_{u=1}^{3} \zeta_{u}(x)(R_{u}f)(x).$$

with

$$\begin{aligned} \zeta_1(x) &= x_1 + x_0 k_1 \\ \zeta_2(x) &= x_2 + x_0 k_2 \\ \zeta_3(x) &= x_3 - x_0 i. \end{aligned}$$

(left-regular; these functions are in fact the building blocks of all functions left-regular in a neighborhood of the origin).

Slice hyperholomorphic functions.

Let $\Omega \subseteq \mathbb{H}$ be an open set and let $f : \Omega \to \mathbb{H}$ be a real differentiable function. Let $I \in \mathbb{S} = \{q \in \mathbb{H}; q^2 = -1\}$ and let f_I be the restriction of f to the complex plane $\mathbb{C}_I := \mathbb{R} + I\mathbb{R}$ passing through 1 and I and denote by x + Iy an element on \mathbb{C}_I . We say that f is a left slice regular function if, for every $I \in \mathbb{S}$, we have:

$$\frac{1}{2}\left(\frac{\partial}{\partial x}+I\frac{\partial}{\partial y}\right)f_l(x+ly)=0.$$

Example:

The quaternionic variables and its powers are slice hyperholomorphic.

Product:

Pointwise product does not keep slice hyperholomorphy, but there is another product, which reduces to convolution on coefficients for power series, which keeps slice hyperholomorphy. Let V be a two sided quaternionic linear space, $\mathcal{B}(V)$ denote the space of bounded right linear operators.

Definition

Let $A \in \mathcal{B}(V)$. We define the S-spectrum $\sigma_S(A)$ as $\sigma_S(A) = \{r \in \mathbb{H} : A^2 - 2\operatorname{Re}(r)A + |r|^2I \text{ is not invertible in } \mathcal{B}(V)\},\$ and the S-resolvent set $\rho_S(A) = \mathbb{H} \setminus \sigma_S(A).$

Definition

Let $A \in \mathcal{B}(V)$ and $r \in \rho_S(A)$. We define the right S-resolvent operator as $S_R^{-1}(r, A) := -(A - I\overline{r})(A^2 - 2\operatorname{Re}(r)A + |r|^2I)^{-1}$.

Proposition

Let $A \in \mathcal{B}(V)$. Then, for $|p| \, \|A\| < 1$ we have

$$\sum_{n=0}^{\infty} p^{n} A^{n} = p^{-1} S_{R}^{-1}(p^{-1}, A) = (I - \bar{p}A)(|p|^{2}A^{2} - 2\operatorname{Re}(p)A + I)^{-1}.$$

Let $H_2(\mathbb{B})$ be the Hardy space of the unit ball $\mathbb{B} \subset \mathbb{H}$:

$$H_2(\mathbb{B}) = \{f(p) = \sum_{n \ge 0} p^n a_n \mid \sum_{n \ge 0} |a_n|^2 < \infty\}$$

de Branges Rovnyak spaces.

Let $S : \mathbb{B} \to \mathbb{H}$. The following are equivalent: (1) S is a Schur function. (2) The operator M_S of slice regular left multiplication by S

$$M_S: f \mapsto S \star f$$

is a contraction on $H_2(\mathbb{B})$. (3) The kernel

$$\mathcal{K}_{\mathcal{S}}(p,q) = \sum_{k=0}^{\infty} p^k (1-\mathcal{S}(p)\overline{\mathcal{S}(q)}) ar{q}^k$$

is positive on $\mathbb{B} \times \mathbb{B}$.

Some references:

D.A., F. Colombo and I. Sabadini. Quaternionic de Branges spaces and characteristic operator function. SpringerBriefs in Mathematics, (2020).

D.A., F. Colombo and I. Sabadini. Slice hyperholomorphic Schur analysis. Operator Theory: Advances and Applications, vol. 256, 2016.

D.A., M.E. Luna-Elizarraràs, M. Shapiro and D.C. Struppa. Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis. SpringerBriefs in Mathematics, Springer (2014).

D.A., I. Paiva and D.C. Struppa. A general setting for functions of Fueter variables: differentiability, rational functions, Fock module and related topics. Israel Journal of Mathematics, vol. 236 (2020), pp. 207-246.

D.A., I. Paiva and D.C. Struppa. Distribution spaces and a new construction of stochastic processes associated with the Grassmann algebra. Journal of Mathematical Physics. 60 (2019), 013508, 21 pp.

D.A, M.E. Luna-Elizarraràs, M. Shapiro and D.C. Struppa. Gleason problem, rational functions and spaces of regular functions: The split-quaternion case. Israel Journal of Mathematics (2018), 319-349.