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Non-Commutative Algebra
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Abstract. Let A be associative division D-algebra. Let e be a basis of A-
vector space V of columns. Let n be dimension of A-vector space V . Linear
transformation of A-vector space V has form

w1

...

wn

 =


a11 ... a1n

... ... ...

an1 ... ann

 ◦
◦


v1

...

vn

 aij ∈ A⊗A

with respect to basis e.
A-number b is called left ◦

◦-eigenvalue of the matrix

a =


a11 ... a1n

... ... ...

an1 ... ann


if there exists column vector v such that

a11 ... a1n

... ... ...

an1 ... ann

 ◦
◦


v1

...

vn

 = b


v1

...

vn


The column vector v is called eigencolumn for left ◦

◦-eigenvalue b.
A-number b is called right ◦

◦-eigenvalue of the matrix

a =


a11 ... a1n

... ... ...

an1 ... ann


if there exists column vector v such that

a11 ... a1n

... ... ...

an1 ... ann

 ◦
◦


v1

...

vn

 =


v1

...

vn

 b

The column vector v is called eigencolumn for right ◦
◦-eigenvalue b.
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Solution of system of differential equations

dx1

dt
= a1

1 s0x
1a1

1 s1 + ...+ a1
n s0x

na1
n s1

......

dxn

dt
= an

1 s0x
1an

1 s1 + ...+ an
n s0x

nan
n s1

is sum of following solutions

• 
x1

...

xn

 = Cebt


c1

...

cn


where A-number b is left ◦

◦-eigenvalue of the matrix

a =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1


and the column c is eigencolumn of the matrix a corresponding to the left

◦
◦-eigenvalue b.

• 
x1

...

xn

 =


c1

...

cn

 ebtC

where A-number b is right ◦
◦-eigenvalue of the matrix

a =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1


and the column c is eigencolumn of the matrix a corresponding to the right

◦
◦-eigenvalue b.
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I want to consider the method of solving the system of differential equations

(5.1)

dx1

dt
= a1

1 s0x
1a1

1 s1 + ...+ a1
n s0x

na1
n s1

......

dxn

dt
= an

1 s0x
1an

1 s1 + ...+ an
n s0x

nan
n s1

In the equality (5.1), the convention on summation over the index s is adopted.
Before we begin, we consider necessary definitions and theorems.

1. Helpful Theorem

Theorem 1.1. Let A be non-commutative D-algebra. For any b ∈ A, there exists
subalgebra Z(A, b) of D-algebra A such that

(1.1) c ∈ Z(A, b) ⇔ cb = bc

D-algebra Z(A, b) is called center of A-number b.

Proof. The theorem follows from the theorem [2]-5.1.10. □

[2] Aleks Kleyn, Introduction into Noncommutative Algebra, Volume 1, Di-
vision Algebra
eprint arXiv:2207.06506 (2022)

Theorem 1.2. Let A be non-commutative D-algebra. For any a ∈ A, if c ∈
Z(A, a), then

(1.2) p(c) ∈ Z(A, a)

for any polynomial

(1.3)
p(x) = p0 + p1x+ ...+ pnx

n

p0, ..., pn ∈ D

Theorem 1.3. Let A be Banach associative D-algebra and a, c ∈ A. The condition

(1.4) c ∈ Z(A, a)

implies that

(1.5) eatc = ceat

Proof. The theorem follows from the theorem [1]-20.1.7. □

[1] Aleks Kleyn, Differential Equation over Banach Algebra,
eprint arXiv:1801.01628 (2018)

http://arxiv.org/pdf/2207.06506.pdf#theorem.English.5.1.10
http://arxiv.org/abs/2207.06506
http://arxiv.org/pdf/1801.01628.pdf#theorem.English.20.1.7
http://arxiv.org/abs/1801.01628
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2. Matrix of A-Numbers

I recall that there are two operations of product of matrices with entries from
non-commutative algebra A.

Definition 2.1. Let the nubmer of columns of the matrix a equal the number of
rows of the matrix b. ∗

∗-product of matrices a and b has form

(2.1) a∗
∗b =

(
aikb

k
j

)
(2.2) (a∗

∗b)
i
j = aikb

k
j

a11 ... a1p

... ... ...

an1 ... anp

 ∗
∗


b11 ... b1m

... ... ...

bp1 ... bpm

 =


a1k b

k
1 ... a1k b

k
m

... ... ...

ank b
k
1 ... ank b

k
m



=


(a∗

∗b)
1
1 ... (a∗

∗b)
1
m

... ... ...

(a∗
∗b)

n
1 ... (a∗

∗b)
n
m


(2.3)

∗
∗-product can be expressed as product of a row of the matrix a over a column of
the matrix b. □

Definition 2.2. Let the nubmer of rows of the matrix a equal the number of columns
of the matrix b. ∗

∗-product of matrices a and b has form

(2.4) a∗∗b =
(
aki b

j
k

)
(2.5) (a∗∗b)

i
j = aki b

j
k

a11 ... a1m

... ... ...

ap1 ... apm

 ∗
∗


b11 ... b1p

... ... ...

bn1 ... bnp

 =


ak1 b

1
k ... akmb1k

... ... ...

ak1 b
n
k ... akmbnk



=


(a∗∗b)

1
1 ... (a∗∗b)

1
m

... ... ...

(a∗∗b)
n
1 ... (a∗∗b)

n
m


(2.6)

∗
∗-product can be expressed as product of a column of the matrix a over a row of
the matrix b. □

In following definitions, we consider different types of eigenvalues of matrix of
A-numbers.

Definition 2.3. A-number b is called

∗
∗-eigenvalue of the matrix f if the ma-
trix f − bEn is ∗

∗-singular matrix. □

Definition 2.4. A-number b is called
∗
∗-eigenvalue of the matrix f if the ma-
trix f − bEn is ∗

∗-singular matrix. □
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Definition 2.5. Let A-number b be ∗
∗-

eigenvalue of the matrix f . A column
v is called eigencolumn of matrix f
corresponding to ∗

∗-eigenvalue b, if the
following equality is true

(2.7) f∗
∗v = bv

□

Definition 2.6. Let A-number b be ∗
∗-

eigenvalue of the matrix f . A column
v is called eigencolumn of matrix f
corresponding to ∗

∗-eigenvalue b, if the
following equality is true

(2.8) v∗∗f = vb

□

Definition 2.7. Let a2 be n × n ma-
trix which is ∗

∗-similar to diagonal ma-
trix a1

a1 = diag(b(1 ), ..., b(n))

Thus, there exist non-∗∗-singular matrix
u2 such that

(2.9) u2
∗
∗a2

∗
∗u

−1∗∗
2 = a1

(2.10) u2
∗
∗a2 = a1

∗
∗u2

The column u2i of the matrix u2 satis-
fies to the equality

(2.11) u2i
∗
∗a2 = b(i)u2i

The A-number b(i) is called left ∗
∗-

eigenvalue and column vector u2i is
called eigencolumn for left ∗

∗-eigen-
value b(i). □

Definition 2.8. Let a2 be n × n ma-
trix which is ∗

∗-similar to diagonal ma-
trix a1

a1 = diag(b(1 ), ..., b(n))

Thus, there exist non-∗
∗-singular matrix

u2 such that

(2.12) u−1∗
∗

2 ∗
∗a2∗

∗u2 = a1

(2.13) a2∗
∗u2 = u2∗

∗a1

The column u2i of the matrix u2 satis-
fies to the equality

(2.14) a2∗
∗u2i = u2i b(i)

The A-number b(i) is called right ∗
∗-

eigenvalue and column vector u2i is
called eigencolumn for right ∗

∗-eigen-
value b(i). □

3. Linear map of A-vector space

Let A be associative division D-algebra. We consider D-algebra A which has
center Z(A) = D.

Theorem 3.1. We can identify linear map

a : A → A

of D-algebra A and tensor

(3.1) as0 ⊗ as1 ∈ A2⊗

by the equality

(3.2) a ◦ x = (as0 ⊗ as1) ◦ x = as0xas1

Let linear map
a : A → A

have representation

(3.3) a ◦ x = (as0 ⊗ as1) ◦ x = as0xas1
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and linear map
b : A → A

have representation

(3.4) b ◦ x = (bt0 ⊗ bt1) ◦ x = bt0xbt1

Then product of maps a and b has the following form

a ◦ b ◦ x = ((as0 ⊗ as1) ◦ (bt0 ⊗ bt1)) ◦ x
= ((as0bt0)⊗ (bt1as1)) ◦ x
= as0bt0xbt1as1

(3.5)

Definition 3.2. Let a be a matrix and aij ∈ An⊗. The matrix a is called matrix

of tensors An⊗. □

The product of maps

(3.6) a ◦ b = (as0 ⊗ as1) ◦ (bt0 ⊗ bt1) = (as0bt0)⊗ (bt1as1)

discussed above can be extended to product of matrices of maps (a = (aij ), aij ∈
A2⊗) .

Definition 3.3. Let aij ∈ A2⊗, bij ∈ A2⊗. We introduce ◦
◦-product of matrices

of maps

(3.7)


a11 ... a1n

... ... ...

am1 ... amn

 ◦
◦


b11 ... b1k

... ... ...

bn1 ... bnk

 =


a1i ◦ bi1 ... a1i ◦ bik

... ... ...

ami ◦ bi1 ... ami ◦ bik


using the following equality

(3.8) (a◦
◦b)

i
j = aik ◦ bkj

□

Remark 3.4. Linear map of vector space V over field D is homomorphism of D-
vector space V . Therefore, we use a matrix of D-numbers as coordinate represen-
tation of linear map or homomorphism.

If we consider vector space V over division D-algebra A, then considered similar-
ity between linear map and homomorphism will be broken. We still use a matrix of
A-numbers to represent homomorphis of A-vector space. However we cannot con-
fine ourselves to the set of homomorphisms to consider linear maps because in this
case we will not be able to define polylinear map. This is why we define linear map
of A-vector space V as linear map of corresponding D-vector space V . Therefore,
for a linear map it does not matter we consider left or right A-vector space. □

Theorem 3.5. Let V 1 , ..., V n , W 1 , ..., Wm be A-vector spaces and

V = V 1 ⊕ ...⊕ V n

W = W 1 ⊕ ...⊕Wm

Let us represent V -number
v = v1 ⊕ ...⊕ vn
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as column vector

(3.9) v =


v1

...

vn


Let us represent W -number

w = w1 ⊕ ...⊕ wm

as column vector

(3.10) w =


w1

...

wm


Then the linear map

f : V → W

has representation as a matrix of maps

(3.11) f =


f1
1 ... f1

n

... ... ...

fm
1 ... fm

n


such way that, if w = f ◦ v, then

(3.12)


w1

...

wm

 =


f1
1 ... f1

n

... ... ...

fm
1 ... fm

n

 ◦
◦


v1

...

vn

 =


f1
i ◦ vi

...

fm
i ◦ vi


The map

f i
j : V j → W i

is a linear map and is called partial linear map.

Proof. The theorem follows from the theorem [2]-7.5.12. □
Let V be leftA-vector space of columns

of dimension n . Let e = (e1 , ..., en) be
a basis of A-vector space V . For any i ,
the set Ai = Aei is subspace of A-vec-
tor space V . A-vector space V is direct
sum of A-vector spaces Ai = Aei

(3.13) V = Ae1 ⊕ ...⊕Aen

Let V be rightA-vector space of columns
of dimension n . Let e = (e1 , ..., en) be
a basis of A-vector space V . For any i ,
the set Ai = eiA is subspace of A-vec-
tor space V . A-vector space V is direct
sum of A-vector spaces Ai = eiA

(3.14) V = e1A⊕ ...⊕ enA

Linear map
f : V → V

of A-vector space V is called linear transformation of A-vector space V . According

http://arxiv.org/pdf/2207.06506.pdf#theorem.English.7.5.12
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to the theorem 3.5, linear transformation of A-vector space V has the following form

(3.15) a ◦


v1

...

vn

 =


a11 ... a1n

... ... ...

an1 ... ann

 ◦
◦


v1

...

vn


where the map

aij : Aj → Ai

is partial linear map.

4. Eigenvalue of Matrix of Linear Map

Definition 4.1. A-number b is called
left ◦

◦-eigenvalue of the matrix a if
there exists column vector v such that

(4.1) a◦
◦v = bv

The column vector v is called eigencol-
umn for left ◦

◦-eigenvalue b. □

Definition 4.2. A-number b is called
right ◦

◦-eigenvalue of the matrix a if
there exists column vector v such that

(4.2) a◦
◦v = vb

The column vector v is called eigencol-
umn for right ◦

◦-eigenvalue b. □

Theorem 4.3. Let entries of the matrix
a satisfy the equality

(4.3) ai
j s0 ⊗ ai

j s1 = 1⊗ a1
i
j

Then left ◦
◦-eigenvalue b is left ∗

∗-eigen-
value of the matrix a1.

Theorem 4.4. Let entries of the matrix
a satisfy the equality

(4.4) ai
j s0 ⊗ ai

j s1 = a0
i
j ⊗ 1

Then right ◦
◦-eigenvalue b is right ∗

∗-
eigenvalue of the matrix a0.

Proof of theorem 4.3. The equality

(4.5) (ai
j s0 ⊗ ai

j s1) ◦ vj = (1⊗ a1
i
j ) ◦ vj = vj a1

i
j

follows from the equality (4.3) ai
j s0 ⊗ ai

j s1 = 1⊗ a1
i
j .

The equality

(4.6)


v1

...

vn

 ∗
∗


a1

1
1 ... a1

1
n

... ... ...

a1
n
1 ... a1

n
n

 =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


v1

...

vn


follows from the equality (4.5). The equality

(4.7)


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


v1

...

vn

 = b


v1

...

vn
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follows from the definition 4.1 of left ◦
◦-eigenvalue of the matrix a. The equality

(4.8)


v1

...

vn

 ∗
∗


a1

1
1 ... a1

1
n

... ... ...

a1
n
1 ... a1

n
n

 = b


v1

...

vn


follows from equalities (4.6), (4.7). The theorem follows from the equality (4.8) and
from the definition 2.7 of left ∗

∗-eigenvalue of the matrix a1. □
Proof of theorem 4.4. The equality

(4.9) (ai
j s0 ⊗ ai

j s1) ◦ vj = (a0
i
j ⊗ 1) ◦ vj = a0

i
j v

j

follows from the equality (4.4) ai
j s0 ⊗ ai

j s1 = a0
i
j ⊗ 1 .

The equality

(4.10)


a0

1
1 ... a0

1
n

... ... ...

a0
n
1 ... a0

n
n

 ∗
∗


v1

...

vn

 =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


v1

...

vn


follows from the equality (4.9). The equality

(4.11)


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


v1

...

vn

 =


v1

...

vn

 b

follows from the definition 4.2 of right ◦
◦-eigenvalue of the matrix a. The equality

(4.12)


a0

1
1 ... a0

1
n

... ... ...

a0
n
1 ... a0

n
n

 ∗
∗


v1

...

vn

 =


v1

...

vn

 b

follows from equalities (4.10), (4.11). The theorem follows from the equality (4.12)
and from the definition 2.8 of right ∗

∗-eigenvalue of the matrix a0. □

Theorem 4.5. Let entries of the matrix
a satisfy the equality

(4.13) ai
j s0 ⊗ ai

j s1 = a0
i
j ⊗ 1

Then left ◦
◦-eigenvalue b is ∗

∗-eigen-
value of the matrix a0.

Theorem 4.6. Let entries of the matrix
a satisfy the equality

(4.14) ai
j s0 ⊗ ai

j s1 = 1⊗ a1
i
j

Then right ◦
◦-eigenvalue b is ∗

∗-eigen-
value of the matrix a1.

Proof of theorem 4.5. The equality

(4.15) (ai
j s0 ⊗ ai

j s1) ◦ vj = (a0
i
j ⊗ 1) ◦ vj = a0

i
j v

j

follows from the equality (4.13) ai
j s0 ⊗ ai

j s1 = a0
i
j ⊗ 1 .
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The equality

(4.16)


a0

1
1 ... a0

1
n

... ... ...

a0
n
1 ... a0

n
n

 ∗
∗


v1

...

vn

 =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


v1

...

vn


follows from the equality (4.15). The equality

(4.17)


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


v1

...

vn

 = b


v1

...

vn


follows from the definition 4.1 of left ◦

◦-eigenvalue of the matrix a. The equality

(4.18)


a0

1
1 ... a0

1
n

... ... ...

a0
n
1 ... a0

n
n

 ∗
∗


v1

...

vn

 = b


v1

...

vn


follows from equalities (4.16), (4.17). The theorem follows from the equality (4.18),
from the definition 2.3 of ∗

∗-eigenvalue of the matrix a0 and from the definition 2.5
of corresponding eigenvector v. □

Proof of theorem 4.6. The equality

(4.19) (ai
j s0 ⊗ ai

j s1) ◦ vj = (1⊗ a1
i
j ) ◦ vj = vj a1

i
j

follows from the equality (4.14) ai
j s0 ⊗ ai

j s1 = 1⊗ a1
i
j .

The equality

(4.20)


v1

...

vn

 ∗
∗


a1

1
1 ... a1

1
n

... ... ...

a1
n
1 ... a1

n
n

 =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


v1

...

vn


follows from the equality (4.19). The equality

(4.21)


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


v1

...

vn

 =


v1

...

vn

 b

follows from the definition 4.2 of right ◦
◦-eigenvalue of the matrix a. The equality

(4.22)


v1

...

vn

 ∗
∗


a1

1
1 ... a1

1
n

... ... ...

a1
n
1 ... a1

n
n

 =


v1

...

vn

 b

follows from equalities (4.20), (4.21). The theorem follows from the equality (4.22),
from the definition 2.4 of ∗

∗-eigenvalue of the matrix a1 and from the definition 2.6
of corresponding eigenvector v. □
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Theorem 4.7. Let the column vector v
be eigencolumn for left ◦

◦-eigenvalue b of
the matrix a. Let A-number b satisfy the
condition

(4.23) b ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s0)

Then for any polynomial

(4.24)
p(x) = p0 + p1x+ ...+ pnx

n

p0, ..., pn ∈ D

the column vector

cv =


cv1

...

cvn


c = p(b)

is also eigencolumn for left ◦
◦-eigenvalue

b.

Proof. The theorem follows from
the theorem [2]-14.4.7. □

Theorem 4.8. Let the column vector v
be eigencolumn for right ◦

◦-eigenvalue b
of the matrix a. Let A-number b satisfy
the condition

(4.25) b ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s1)

Then for any polynomial

(4.26)
p(x) = p0 + p1x+ ...+ pnx

n

p0, ..., pn ∈ D

the column vector

vc =


v1 c

...

vnc


c = p(b)

is also eigencolumn for right ◦
◦-eigen-

value b.

Proof. The theorem follows from
the theorem [2]-14.4.8. □

5. Differential Equation
dx

dt
= a◦

◦x

We can represent the system of differential equations

(5.1)

dx1

dt
= a1

1 s0x
1a1

1 s1 + ...+ a1
n s0x

na1
n s1

......

dxn

dt
= an

1 s0x
1an

1 s1 + ...+ an
n s0x

nan
n s1

using product of matrices

(5.2)


dx1

dt

...
dxn

dt

 =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1

 ◦
◦


x1

...

xn


Theorem 5.1. Let A-number b be left

◦
◦-eigenvalue of the matrix

a =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1



Theorem 5.2. Let A-number b be right

◦
◦-eigenvalue of the matrix

a =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1



http://arxiv.org/pdf/2207.06506.pdf#theorem.English.14.4.7
http://arxiv.org/pdf/2207.06506.pdf#theorem.English.14.4.8
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and satisfies the condition

(5.3) b ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s0)

Then the system of differential equations
(5.2) has the solution

(5.4) x = Cebtc = Cebt


c1

...

cn


where A-number C satisfies the condi-
tion

(5.5) C ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s0)

and the column c is eigencolumn of the
matrix a corresponding to the left ◦

◦-
eigenvalue b.

Proof. The theorem follows from
the theorem [1]-21.5.1. □

and satisfies the condition

(5.6) b ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s1)

Then the system of differential equations
(5.2) has the solution

(5.7) x = cebtC =


c1

...

cn

 ebtC

where A-number C satisfies the condi-
tion

(5.8) C ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s1)

and the column c is eigencolumn of the
matrix a corresponding to the right ◦

◦-
eigenvalue b.

Proof. The theorem follows from
the theorem [1]-21.5.2. □

Consider differential equation

(1⊗ 1) ◦ dny

dtn
+ (ans0 ⊗ ans1) ◦

dn−1y

dtn−1
+ ...

+(a2s0 ⊗ a2s1) ◦
dy

dt
+ (a1s0 ⊗ a1s1) ◦ y = 0

(5.9)

Theorem 5.3. Let a map x = ebt be solution of differential equation (5.9). Then
A-number b is a root of the equation

(5.10) xn + ans0x
n−1ans1 + ...+ a2s0xa2s1 + a1s0a1s1 = 0

and satisfies either the condition

(5.11) b ∈
n⋂

i=1

Z(A, ai s0)

or the condition

(5.12) b ∈
n⋂

i=1

Z(A, ai s1)

The differential equation

(5.13)
d2x

dt2
− i

dx

dt
− dx

dt
j + ixj = 0

http://arxiv.org/pdf/1801.01628.pdf#theorem.English.21.5.1
http://arxiv.org/pdf/1801.01628.pdf#theorem.English.21.5.2
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is equivalent to the system of differential equations

(5.14)

dx1

dt
= x2

dx2

dt
= ix2 + x2 j − ix1 j

The matrix representation of the system of differential equations (5.14) has the
following form

(5.15)


dx1

dt

dx2

dt

 =

 0⊗ 0 1⊗ 1

−i⊗ j i⊗ 1 + 1⊗ j

 ◦
◦

x1

x2


We have yet to find a method for determining eigenvalues of the matrix

(5.16) a =


a1
1 s0 ⊗ a1

1 s1 ... a1
n s0 ⊗ a1

n s1

... ... ...

an
1 s0 ⊗ an

1 s1 ... an
n s0 ⊗ an

n s1


However according to the theorem 5.3, eigenvalues of matrix

(5.17)

 0⊗ 0 1⊗ 1

−i⊗ j i⊗ 1 + 1⊗ j


are roots of the equation

(5.18) x2 − ix− xj + k = 0

• The value

(5.19) b = i

satisfies the condition (5.3) b ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s0) .

a1
1 10 = 0, a1

2 10 = 1, a2
1 10 = −i, a2

2 10 = i, a2
2 20 = 1.

According to the theorem 5.1, we are looking for a solution in the form

(5.20)

x1

x2

 = (C0
i + C1

i i)e
it

c1i

c2i


where

* C0
i , C

1
i ∈ R

* Ci = C0
i + C1

i i satisfies the condition

(5.5) Ci ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s0)

* The column ci is eigencolumn of the matrix a corresponding to the left

◦
◦-eigenvalue b = i.
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According to theorems 1.2, 1.3,

(5.21) (C0
i + C1

i i)e
it = eit(C0

i + C1
i i)

The equality

(5.22)

x1

x2

 = eit(C0
i + C1

i i)

c1i

c2i


follows from the equality (5.20), (5.21). According to the theorem 4.7, the
column Cici is eigencolumn of the matrix a corresponding to the left ◦

◦-
eigenvalue b = i. Since for us it does not matter the format of notation
of eigencolumn of matrix a, we can represent the solution of the system of
differential equations

(5.14)

dx1

dt
= x2

dx2

dt
= ix2 + x2 j − ix1 j

as

(5.23)

x1

x2

 = eit

c1i

c2i


The equality

(5.24)

 0⊗ 0 1⊗ 1

−i⊗ j i⊗ 1 + 1⊗ j

 ◦
◦

c1i

c2i

 = i

c1i

c2i


follows from equalities

(4.1) a◦
◦v = bv (5.19) b = i

Equalities

(5.25) c2i = ic1i

(5.26) −ic1i j + ic2i + c2i j = ic2i

follow from the equality (5.24) and the equality

(3.8) (a◦
◦b)

i
j = aik ◦ bkj

The equality (5.26) −ic1i j + ic2i + c2i j = ic2i follows from the equal-

ity (5.25) c2i = ic1i . Therefore, the solution is (we set di = c1i )

(5.27)

x1

x2

 = eit

 di

idi
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It remains to check the solution

dx1

dt
= eitidi = x2

dx2

dt
= eitiidi = −eitdi =

−ix1 j + ix2 + x2 j = −ieitdij + ieitidi + eitidij

= −ieitdij + iieitdi + ieitdij

= −eitdi

(5.28)

• The value

(5.29) b = j

satisfies the condition (5.6) b ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s1) .

a1
1 11 = 0, a1

2 11 = 1, a2
1 11 = j, a2

2 11 = 1, a2
2 21 = j.

According to the theorem 5.2, we are looking for a solution in the form

(5.30)

x1

x2

 =

c1j

c2j

 ejt(C0
j + C1

j j)

where
* C0

i , C
1
i ∈ R

* Cj = C0
j + C1

j j satisfies the condition

(5.8) Cj ∈
n⋂

i=1

n⋂
j=1

Z(A, ai
j s1)

* The column cj is eigencolumn of the matrix a corresponding to the
right ◦

◦-eigenvalue b = j.
According to theorems 1.2, 1.3,

(5.31) (C0
j + C1

j j)e
jt = ejt(C0

j + C1
j j)

The equality

(5.32)

x1

x2

 =

c1j

c2j

 (C0
j + C1

j j)e
jt

follows from the equality (5.30), (5.31). According to the theorem 4.8, the
column cjCj is eigencolumn of the matrix a corresponding to the right ◦

◦-
eigenvalue b = j. Since for us it does not matter the format of notation
of eigencolumn of matrix a, we can represent the solution of the system of
differential equations

(5.14)

dx1

dt
= x2

dx2

dt
= ix2 + x2 j − ix1 j
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as

(5.33)

x1

x2

 =

c1j

c2j

 ejt

The equality

(5.34)

 0⊗ 0 1⊗ 1

−i⊗ j i⊗ 1 + 1⊗ j

 ◦
◦

c1j

c2j

 =

c1j

c2j

 j

follows from equalities

(4.2) a◦
◦v = vb (5.29) b = j

Equalities

(5.35) c2j = c1j j

(5.36) −ic1j j + ic2j + c2j j = c2j j

follow from the equality (5.34) and the equality

(3.8) (a◦
◦b)

i
j = aik ◦ bkj

The equality (5.36) −ic1j j + ic2j + c2j j = c2j j follows from the equal-

ity (5.35) c2j = c1j j . Therefore, the solution is (we set dj = c1j )

(5.37)

x1

x2

 =

 dj

djj

 ejt

It remains to check the solution

dx1

dt
= djje

jt = x2

dx2

dt
= djjje

jt = −dje
jt =

−ix1 j + ix2 + x2 j = −idje
jtj + idjje

jt + djje
jtj

= −idje
jtj + idje

jtj + dje
jtjj

= −dje
jt

(5.38)

Therefore, general solution of the system of differential equations

(5.14)

dx1

dt
= x2

dx2

dt
= ix2 + x2 j − ix1 j

is

(5.39)

x1

x2

 = eit

 di

idi

+

 dj

djj

 ejt

The general solution of the differential equation

(5.13)
d2x

dt2
− i

dx

dt
− dx

dt
j + ixj = 0
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is

(5.40) x = eitdi + dje
jt

Remark 5.4. Product and division of polynomials in non-commutative algebra
are not simple operations. So Ore suggested to consider left-sided (right-sided)
polynomials. Ore defined product of left-sided polynomials in such a way that the
result of the operation is left-sided polynomial. Ore also proposed a method of
transformation of polynomial into left-sided polynomial. This algebra is called Ore
polynomial ring.

Method for solving differential equation (5.13) raises the question of the limits of
applicability of Ore polynomial ring because we cannot find both roots of the equa-

tion (5.18) x2 − ix− xj + k = 0 by transforming the polynomial (5.18)

into left-sided or right-sided polynomial. □

See the definition of Ore polynomial ring in the chapter [3]-2.

[3] Paul M. Cohn, Skew Fields, Cambridge University Press, 1995
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