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Outline
1. Some motivating historical

ideas
I Spectroscopy
I Hearing the Shape of a drum

2. What did we prove?
3. An outline of the proof &

Speculation



Auguste Comte

We understand the possibility
of determining their shapes,
their distances, their sizes and
their movements; whereas we
would never know how to study
by any means their chemical
composition, or their
mineralogical structure, and,
even more so, the nature of any
organized beings that might live
on their surface (Comte, 1835).



Key Questions Emerging
1. Given knowledge of the structure of an atom or

molecule, could one predict the discrete set of
vibration frequencies of the system?

2. Conversely, given the spectrum of a vibrating system,
what can be inferred about the system’s structure?



Arthur Schuster

To find out the different tunes
sent out by a vibrating system
is a problem which may or may
not be solvable in certain
special cases, but it would
baffle the most skillful
mathematician to solve the
inverse problem and to find out
the shape of a bell by means of
the sounds which it is capable
of sending out. (Schuster,
1882)



Mark Kac

In 1966 Mark Kac drew the
attention of mathematicians to
spectral problems by posing a
question that is a prototype for
those arising in spectral theory:
Can we hear the shape of a
drum?



Can you hear the shape of a
drum?

I Given the shape, what can
we infer about the sound;
and

I Given the sound, can we
reconstruct the shape?



From real drums to mathematical
drums



Some “simple” drums



Congruent Triangles
I Evidently two congruent domains must have the same

spectrum, we say that the domains are isospectral.
I Does isospectrality guarantee congruence?



Can we hear the shape of a
triangle among all triangles?

Theorem (Grieser & Maronna)
A triangle is determined uniquely up to congruence by its area
A, its perimeter P, and the sum R of the reciprocals of its angles.

Corollary
One can hear the shape of a triangle among all triangles. That
is, if we know that Ω is a triangle, then the spectrum of Ω
determines which triangle it is.



Isospectral Manifolds
I John Milnor, 1964–an isospectral pair of flat tori of 16

dimensions which are not isometric
I M. F. Vignéras, 1980–based on the Selberg trace formula

for PSL2(R) and PSL2(C) constructed examples of
isospectral, non-isometric closed hyperbolic 2-manifolds
and 3-manifolds as quotients of hyperbolic 2-space and
3-space by arithmetic subgroups



The Sunada Method(1985)

...a general method of
constructing isospectral pairs
based on a covering space
technique

the idea:
I M is a finite covering of a

compact Riemannian
manifold M0

I G the finite group of deck
transformations

I H1, H2 are subgroups of G
meeting each conjugacy
class of G in the same
number of elements,

I then the manifolds H1\M
and H2\M are isospectral
but not necessarily
isometric



Isospectral Drums



What can we say about an isospectral set of
planar regions?...an isospectral set of compact

Riemannian manifolds?

Theorem (Sarnak, Phillips, Osgood(1988))

(A) An isospectral set of closed Riemannian two manifolds is
compact in the C∞ topology.

(B) An isospectral set of planar drums is compact in the C∞
topology.

Problem
Are planar domains isospectrally rigid; i.e., is every one
parameter family of isospectral planar domains necessarily an
isometric family?



Risager

Asymptotic Densities of Maaß Newforms

For which Hecke congruence groups Γ0(M) is
Nnew

Γ0(M)(λ), i.e., the spectral counting function of
Laplace eigenvalues for Maass newforms on
Γ0(M), of cocompact type?



Spectral Theory–a sketch
(i) (a) H

(b) Γ
(c) Γ\H

(ii) ∆Γ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
(iii) L2 (Γ\H)

(i) f is an eigenfunction of
∆Γ,

(ii) λ is an eigenvalue of ∆Γ.
(iii) f is a Maaß waveform

f ∈ L2 (Γ\H)

(i) f (γz) = f (z) for all γ ∈ Γ.
(ii) f vanishes at the cusps

of Γ and
(iii) ∆Γf = λf for some λ > 0

(i) basis for L2 (Γ\H) on
Γ\H.

(ii) no explicit construction
exists for any of these
functions

(iii) number theory,
dynamical systems and
quantum chaos



A display of a Maas Waveform computed for the Hecke
Congruence subgroup Γ0(7)

Figure: Maass Waveform



The spectrum of ∆Γ.

I ∆O1 on L2 (O1\H
)

is discrete, and is comprised of the
eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . . , λn −→∞.

I ∆Γ0(M) on L2 (Γ0(M)\H) has both a continuous spectrum[1
4 ,∞

)
and a discrete spectrum contained in [0,∞). The

discrete eigenvalues satisfy

0 = µ0 < µ1 ≤ µ2 ≤ . . . , µn −→∞.



The spectral counting function
NΓ(λ)

for a cofinite group Γ is defined as follows:

NΓ(λ) = #{λn ≤ λ : λn ∈ dSpec(∆Γ)}.

It has asymptotic expansion of form:

(a) NΓ(λ) = Area(Γ\H)
4π λ+ O(

√
λ

logλ),when Γ is a co-compact
group; and

(b) NΓ(λ) = Area(Γ\H)
4π λ+ O(

√
λlogλ), when Γ is a non

co–compact but co–finite group;
(c) We note the difference in error terms in the co–compact

and the non–cocompact cases



Newforms
Let a,m,d ∈ N such that m < d and am|d .
(i) If m|d then Γ0(d) ⊂ Γ0(m).
(ii) If f (z) is a Maaß form on Γ0(m) then f (az) is

a Maaß form on Γ0(d) for all a| dm .
(iii) Such functions are called “oldforms” on

Γ0(d) and it is natural to avoid such functions
in a search for Maaß forms, for they naturally
belong on the larger group Γ0(m).

(v) The Maaß forms which naturally live on
Γ0(d) are called “newforms”.



The Basic Outline

A=
(
α,β
Q

)
O,

d(O)=d ,

O1 Γ0(d)

O1\H Γ0(d)\H



∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

)

L2 (O1\H
)

L2 (Γ0(d)\H)



(
α,β
Q

)

O

O1 Γ0(d)

MO1 MΓ0(d)
JLC
STF



Asymptotic densities of Maaß
Newforms,

(i) Γ-cofinite arithmetic Fuchsian group;
(a) Γc = O1

(b) Γnc = Γ0(d)

(ii) ∆Γ-automorphic Laplacian related to Γ

(iii) NΓ(λ) = #{λn ≤ λ : λn ∈ Spec(∆Γ)}-
corresponding spectral counting
function



(i) NO1(λ) has an asymptotic expansion of the
form:

NO1(λ) =
Vol(O1\H)

4π
λ + O(

√
λ

logλ
).

(ii) NΓ0(d)(λ) has an asymptotic expansion of the
form:

NΓ0(d)(λ) =
Vol(Γ0(d)\H)

4π
λ + O(

√
λlogλ).

(iii) Difference in error terms: cocompact-O(
√
λ

logλ)

and non-cocompact O(
√
λlogλ)



Nnew
Γ0(d)(λ) of Cocompact Type,

(i) Nnew
Γ0(d)(λ)-counts only the eigenvalues

corresponding to newforms on Γ0(d).

(ii) when d is the product of an even number of
different primes:

Nnew
Γ0(d)(λ) = cd

Vol(Γ0(d)\H)

4π
λ + O(

√
λ

logλ
)

where 0 < cd < 1.
(iii) This is an expansion of form characteristic of

the cocompact case.
I How is this explained?
I Are there other values of d for which Nnew

Γ0(d)(λ) is of this
form?



Are there other values of d for
which Nnew

Γ0(d)(λ) is of this form?

Theorem (Risager)

Let M,n, t ∈ N be the natural numbers defined
uniquely by the requirements that n be
squarefree and that M = nt2. Nnew

Γ0(M)(λ) is of
cocompact type if and only if at least one of the
following holds:
(i) n contains at least two primes.
(ii) n is a prime and 4||M.

Are there spectral correspondences which explain the
Theorem?



How is this explained?
(i) Correspondences between spaces of

automorphic forms for cocompact(i.e.,
compact quotient space)( Γc) and
non-cocompact ( Γnc) arithmetic Fuchsian
groups.

(ii) Jacquet Langlands Correspondence–To any
nonconstant eigenfunction of the Laplacian
on a cocompact arithmetic Fuchsian group
there corresponds a nontrivial cuspform with
the same eigenvalue on some
non-cocompact but cofinite arithmetic
Fuchsian group.



Spectral theory
of automorphic
Laplacians

(i) The adelic-
representation
theoretic view
point or

(ii) The classical
perspective of
the upper
half-plane

Adelic-
Representation
theoretic

(i) Jacquet and
Langlands,
1970

(ii) Hideo
Shimizu, 1972

Classical

(i) Eichler, A.
Selberg,
1950’s.

(ii) Hejhal, 1983
(iii) Bolte and

Johansson:
1999

(iv)
Strömbergsson,
2000 and

(v) Risager, 2003
(vi) Blackman,

2011,
Blackman &
Lemurell,
2014



Hejhal
A classical approach to a well-known spectral
correspondence on quaternion groups

(i) correspondence can be established using completely
classical techniques.

(ii) integral transform
Θ :MO1 ⊂ L2

0

(
O1\H

)
↪→ CΓ0(M) ⊂ L2 (Γ0(M)\H).

Matters Arising

(i) the precise range of Θ?
(ii) was Θ injective?

Suggestions for Solutions

(i) space of
Γ0(N)-newforms

(ii) Selberg trace formula .



Bolte and Johannson
Extended Hejhal’s work

(i) Theta-lifts of Maaß waveforms,
(ii) A Spectral Correspondence for Maaß waveforms

Theorem (Bolte and Johannson)
All eigenvalues of the hyperbolic Laplacian on L2

(
O1\H

)
also occur as eigenvalues of the hyperbolic Laplacian on
L2 (Γ0(M)\H)where M = d(O).

Theta lifts

(i) preserve eigenvalues of the hyperbolic Laplacian
(ii) they can be extended to arbitrary orders
(iii) Natural link-MO1 ←→ CΓ0(M)where

M = discriminant(O)



Theorem (Bolte and Johansson)
Let O1 ⊂ Omax ⊂ A be group of units of norm one a
maximal order in A with discriminant(Omax ) = M. Then
the positive Laplace eigenvalues, including multiplicities,
on O1\H coincide with the Laplace spectrum onMnew

Γ0(M).

I.e., Laplace eigenvalues and their multiplicities for the
cocompact group O1 coincide with those for the newforms

of level M . I.e., in the language of the Selberg Trace
formula-

∑
rk∈Spec

(
∆O1

max

) h(rk ) =
∑

rk∈Spec
(

∆new
Γ0(M)

)
) h(rk ) (3.1)

for an arbitrary test function h.



Bolte and Johansson(Lemurell)-Matters arising

(i) Did this result imply that Θ provided a bijection between
Laplace eigenspaces in L2(O1\H) and
Mnew

Γ0(d) ⊂ L2(Γ0(d)\H)?

(ii) yes. with the assumption of one dimensionality of the
relevant eigenspaces-without this assumption one could
not even assert that the Range(Θ) ∈Mnew

Γ0(d)

(iii) Strömbergsson’s Thesis



Strömbergsson
(i) Choose a Hecke basis of Maaß waveforms

ϕ1, ϕ2, ϕ3, ... inMO1 ⊂ L2(O1\H); ordered with
increasing eigenvalues. Write: ∆ϕk + λkϕk = 0 for
some 0 = λ0 ≤ λ1 ≤ λ3 ≤ ...

(ii) g1,g2,g3, ... be a basis of newforms in the newspace
Mnew

Γ0(d) ⊂MΓ0(d); ordered with increasing
eigenvalues. We write: ∆gk + µkgk = 0 for some
0 = µ0 ≤ µ1 ≤ µ3 ≤ ...

(iii) integral transform
Θ :MO1 ⊂ L2

0

(
O1\H

)
↪→MΓ0(d) ⊂ L2 (Γ0(d)\H).

Theorem (Strömbergsson)
Given unit group O1 and Hecke congruence subgroup
Γ0(d), as above. We have λk = µk for all k ≥ 1. In
particular, for any λ > 0, Θ is a bijection fromMO1(λ)
ontoMnew

Γ0(d)(λ).



What values of M are explained
thus far?

Case I (a) n -product of an even number of primes
(b) t2 = 1

In this case we take O1 to be a unit group in a
maximal order O in an indefinite rational quaternion
division algebra A with dA = n. This correspondence
is described classically by Strömbergsson and Bolte
and Johansson. I.e.,MO1(λ)←→Mnew

Γ0(d)(λ)



Case II (a) n -product of an even number of primes
(b) t2 6= 1, with (n, t2) = 1

We take O1 ⊂ Ot2 ⊂ Omax ⊂ A with dA = n This
correspondence is described classically by both
Risager and Strömbergsson. They prove

Theorem (Strömbergsson and Risager)
If O1 is the unit group in an Eichler order of level t2 in a
maximal order O ⊂ A with reduced discriminant dA = n
then there is a correspondence given by an integral
operator such that for λ 6= 0 a certain λ− new eigenspace
of ∆O1 is in bijection with the λ−new eigenspace of ∆Γ0(M)

where M = nt2.



Case III (a) n = pq, p,q − primes > 2, p 6= q
(b) t2 = p2r q2s, r , s ≥ 1

We take O1
pq,p2r q2s ⊂ Opq,p2r q2s ⊂ Opq ⊂ A-with

e(Opq,p2r q2s )p = e(Opq,p2r q2s )q = −1 and dA = pq. =⇒
dOpq,p2r q2s = p2r+1q2s+1-
Mnew
O1

pq,p2r q2s
(λ)←→Mnew

Γ0(p2r+1q2s+1)
(λ)

Using the Selberg trace formula, we show that the
positive Laplace eigenvalues, including multiplicities,
for Maaß newforms on O1

pq,p2r q2s coincides with the
Laplace spectrum on Maaß newforms for the Hecke
congruence group Γ0(p2r+1q2s+1) where r , s ≥ 1. I.e.
Mnew

Γ0(p2r+1q2s+1)
corresponds withMnew

O1
pq,p2r q2s



Theorem (Blackman & Lemurell)
Assume that r is a positive integer that is divisible by an
even number of primes, and that every prime dividing r
does so to an odd power. Let u be any positive integer
relatively prime to r . Then the positive Laplace
eigenvalues, including multiplicities, for Maaß newforms
on O1(r ,u) and Γ0(ru) coincide.



Correspondence between Maaß
newforms on orders in different

quaternion algebras.
Corollary
Assume that r1 and r2 are positive integers each divisible
by an even number of primes, and that every prime
dividing r1 or r2 does so to an odd power. Let u1 and u2 be
any positive integers relatively prime to r1 and r2
respectively such that r1u1 = r2u2. Then the positive
Laplace eigenvalues, including multiplicities, for Maaß
newforms on O1(r1,u1) and O1(r2,u2) coincide.
The smallest example matching the corollary is

Mnew
O1

6,5
=Mnew

O1
10,3

=Mnew
O1

15,2



Conjecture

In the case N = 4pu2 with p a prime and u odd there is no
quaternion order with a natural correspondence between
newforms as the one in our Theorem.



Our Strategy
What does the comparison via

the Selberg trace formulas
entail?

1. A special linear combination of Γ0(ru)-trace formulas
has the property that parabolic term vanishes, and
1.1 identity(area of fundamental domain),
1.2 elliptic, and
1.3 hyperbolic

terms all agree with the corresponding terms for a
linear combination of O1-trace formulas

2. Local embedding numbers
3. The agreement of these local factors which gives us

the correspondence.



The Selberg Trace Formula

1. Selberg trace formula: establish a spectral
correspondence betweenMnew

Γ0(p3q3)
andMnew

O1
pq,p2q2

.

2. What is the STF? general identity connecting
geometrical and spectral terms, i.e., an identity of
form:∑

spectral terms =
∑

geometric terms. (4.1)

The spectral terms come
from discrete and continuous
spectrum of the automorphic
hyperbolic Laplacian ∆Γ for
a cofinite Fuchsian group Γ

The geometrical terms are
integral operators depending
on the conjugacy classes of
Γ.



We will need two versions of it
1. 1.1 for the cocompact groups O1

1.2 for the Hecke congruence groups Γ0(m).

2. The trace formula for both types of these Fuchsian
groups under consideration are well-known

3. We recall the known results



In what follows h : C→ C satisfying
1. h(r) = h(−r),
2. h(r) is holomorphic in the strip |=(r)| ≤ 1

2 + ε, for
some ε > 0,

3. |h(r)| ≤ C
(1+<(r))2+δ for some C > 0 and δ > 0.



The Selberg Trace Formula-O1

1. The Fourier transform of h will then be written as

ĥ(u) =
1

2π

∫ +∞

−∞
h(r) e−iru dr .

2. Let λk = r2
k + 1

4 run through all eigenvalues of the hyperbolic
Laplacian on L2(O1\H), counted with multiplicities.

3. Then
∞∑

k=0

h(rk ) =
AO1

4π

∫ +∞

−∞
h(r) r tanh(πr) dr

+
∑

t∈{0,1}

E ′(t ,1,O1)

2mt

mt−1∑
k=1

1
sin( kπ

mt
)

∫ +∞

−∞
h(r)

e−
2kπr

mt

1 + e−2πr dr

+
∞∑

t=3

E ′(t ,1,O1) arccosh( t
2 )
∞∑

k=1

ĥ
(
2k arccosh( t

2 )
)

sinh
(
k arccosh( t

2 )
) .

(4.2)



We will view equation above as having form

∞∑
k=0

h(rk ) = I + E +H (4.3)

where

IO1 =
AO1

4π

∫ +∞

−∞
h(r) r tanh(πr) dr (4.4)

will denote the identity contribution,

EO1 =
∑

t∈{0,1}

E ′(t ,1,O1)

2mt

mt−1∑
k=1

1
sin( kπ

mt
)

∫ +∞

−∞
h(r)

e−
2kπr

mt

1 + e−2πr dr (4.5)

the elliptic contribution and

HO1 =
∞∑

t=3

E ′(t ,1,O1) arccosh( t
2 )
∞∑

k=1

ĥ
(
2k arccosh( t

2 )
)

sinh
(
k arccosh( t

2 )
) (4.6)

the hyperbolic contribution. We recall that in the case of cocompact
groups there is no continuous spectrum and no parabolic element.



The Selberg Trace Formula-Hecke Congruence
Groups-Γ0(m)

Let µk = r2
k + 1

4 run through all eigenvalues of the hyperbolic
Laplacian on Γ0(m)\H, counted with multiplicities. Then
∞∑

k=0

h(rk ) =
Am

4π

∫ +∞

−∞
h(r) r tanh(πr) dr

+
∑

t∈{0,1}

E ′(t ,1, Γ0(m))

2mt

mt−1∑
k=1

1
sin( kπ

mt
)

∫ +∞

−∞
h(r)

e−
2kπr

mt

1 + e−2πr dr

+
∞∑

t=3

E ′(t ,1, Γ0(m)) arccosh( t
2 )
∞∑

k=1

ĥ
(
2k arccosh( t

2 )
)

sinh
(
k arccosh( t

2 )
)

+ 2ω(m)

{
ĥ(0) log(π2 )− 1

2π

∫ +∞

−∞
h(r)

[
Γ′

Γ
( 1

2 + ir) +
Γ′

Γ
(1 + ir)

]
dr

+ 2
∞∑

n=1

Λ(n)

n
ĥ(2 log n)−

∑
p|m

p prime

∞∑
k=0

log p
pk ĥ(2k log p)

}
.

(4.7)



∞∑
k=0

h(rk ) = I + E +H+ P (4.8)

where

IΓ0(m) =
Am

4π

∫ +∞

−∞
h(r) r tanh(πr) dr (4.9)

EΓ0(m) =
∑

t∈{0,1}

E ′(t ,1, Γ0(m))

2mt

mt−1∑
k=1

1
sin(kπ

mt
)

∫ +∞

−∞
h(r)

e−
2kπr
mt

1 + e−2πr dr

(4.10)

HΓ0(m) =
∞∑

t=3

E ′(t ,1, Γ0(m)) arccosh( t
2)
∞∑

k=1

ĥ
(
2k arccosh( t

2)
)

sinh
(
k arccosh( t

2)
)

(4.11)

PΓ0(m) =2ω(m)

{
ĥ(0) log(π2 )− 1

2π

∫ +∞

−∞
h(r)

[
Γ′

Γ
(1

2 + ir) +
Γ′

Γ
(1 + ir)

]
dr

+ 2
∞∑

n=1

Λ(n)

n
ĥ(2 log n)−

∑
p|m

p prime

∞∑
k=0

log p
pk ĥ(2k log p)

}

(4.12)
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