\mathcal{A}-Calculus on a Real Associative Algebra

James S. Cook
Liberty University
January 6, 2017

a word on algebras and representations

(1) Algebra: \mathcal{A} denotes a real n-dimensional vector space with an associative unital multiplication.
(2) Right \mathcal{A}-linear maps: If $T: \mathcal{A} \rightarrow \mathcal{A}$ is a linear transformation with $T(v \star w)=T(v) \star w$ then $T \in \mathcal{L}_{\mathcal{A}}$. Since $1 \in \mathcal{A}$ we find:

$$
T(v)=T(1 \star v)=T(1) \star v=L_{T(1)}(v)
$$

(3) Regular representation: If $M=[T]_{\beta}$ for $T \in \mathcal{L}_{\mathcal{A}}$ then $M \in \mathrm{M}_{\mathcal{A}}(\beta)$.
(1) Algebra Isomorphisms: $\mathcal{A} \simeq \mathcal{L}_{\mathcal{A}} \simeq \mathrm{M}_{\mathcal{A}}(\beta)$. For $\mathcal{A}=\mathbb{R}^{n}$:

$$
\alpha \longleftrightarrow L_{\alpha} \longleftrightarrow\left[\alpha \star e_{1}\left|\alpha \star e_{2}\right| \cdots \mid \alpha \star e_{n}\right]
$$

(- Application to Quaternions:

$$
a+b i+c j+d k \longleftrightarrow L_{a+b i+c j+d k} \longleftrightarrow\left[\begin{array}{rrrr}
a & -b & -c & -d \\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right]
$$

differentiability over an algebra

Definition

Let $U \subseteq \mathcal{A}$ be an open set containing p. If $f: U \rightarrow \mathcal{A}$ is a function then we say f is \mathcal{A}-differentiable at p if there exists a linear function $d_{p} f \in \mathcal{L}_{\mathcal{A}}$ such that

$$
\lim _{h \rightarrow 0} \frac{f(p+h)-f(p)-d_{p} f(h)}{\|h\|}=0 .
$$

Theorem (The \mathcal{A}-Cauchy Riemann Equations)

If $f: \mathcal{A} \rightarrow \mathcal{A}$ is \mathcal{A}-differentiable at p and \mathcal{A} has basis $\left\{v_{1}, \ldots, v_{n}\right\}$ with $v_{1}=1$ and coordinates x_{1}, \ldots, x_{n} then $\frac{\partial f}{\partial x_{k}}=\frac{\partial f}{\partial x_{1}} \star v_{k}$ for $k=2, \ldots, n$.

Proof: by definition $d_{p} f\left(v_{k}\right)=\frac{\partial f}{\partial x_{k}}$. If f is \mathcal{A}-differentiable at p then $d_{p} f$ exists and is right \mathcal{A}-linear and $d_{p} f\left(v_{k}\right)=d_{p} f(1) \star v_{k}$ thus $\frac{\partial f}{\partial x_{k}}=\frac{\partial f}{\partial x_{1}} \star v_{k} . \square$

Observation: there are $n^{2}-n$ generalized-CR equations

concerning differentiability via difference quotients

Definition

Let $f: \operatorname{dom}(f) \rightarrow \mathcal{A}$ be a function where $\operatorname{dom}(f)$ is open and $p \in \operatorname{dom}(f)$.
(1.) If f is \mathcal{A}-differentiable at p then f is D_{1} at p.
(2.) If $\lim _{\mathcal{A}^{\times} \ni \zeta \rightarrow p} \frac{f(\zeta)-f(p)}{\zeta-p}$ exists then f is D_{2} at p.

Abstract

Theorem Let U be an open set in \mathcal{A}. If f is D_{2} at each point in U then f is D_{1} on U.

However, in $\mathcal{A}=\mathbb{R} \oplus \in \mathbb{R}$ with $\epsilon^{2}=0$ the function $f(\zeta)=\zeta$ is nowhere D_{2}.

Theorem

Let U be an open set in a commutative semisimple finite dimensional real algebra \mathcal{A}. The set of D_{1} functions on U coincides with the set of D_{2} functions on U.

connecting the \mathcal{A}-CR equations and $\mathrm{M}_{\mathcal{A}}$

- Let $\mathcal{A}=\mathbb{C}$. If $f=u+i v \in \mathcal{C}_{\mathcal{A}}(\mathcal{A})$ then $J_{f}=\left[\begin{array}{ll}\partial_{x} u & \partial_{y} u \\ \partial_{x} v & \partial_{y} v\end{array}\right]$. Note, $\mathrm{J}_{f} \in \mathrm{M}_{\mathcal{A}}$ implies $\mathrm{J}_{f}=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ thus $\underbrace{\partial_{x} u=\partial_{y} v, \partial_{x} v=-\partial_{y} u}_{\mathrm{CR} \text { eqs. }}$.
- If $\mathcal{A}=\mathbb{R} \oplus j \mathbb{R} \oplus j^{2} \mathbb{R}$ then $M_{\mathcal{A}}$ has matrices with form $\left[\begin{array}{lll}a & c & b \\ b & a & c \\ c & b & a\end{array}\right]$. If $f=u+j v+j^{2} w \in C_{\mathcal{A}}(\mathcal{A})$ then six CR eqns. follow:

$$
J_{f}=\left[\begin{array}{lll}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right]=\left[\begin{array}{ccc}
u_{x} & w_{x} & v_{x} \\
v_{x} & u_{x} & w_{x} \\
w_{x} & v_{x} & u_{x}
\end{array}\right] \Rightarrow \underbrace{\begin{array}{l}
u_{x}=v_{y}=w_{z} \\
v_{x}=w_{y}=u_{z} \\
w_{x}=u_{y}=v_{z}
\end{array}}_{C R \text { eqs. }}
$$

differential \mathcal{A}-calculus:

Suppose that f and g are \mathcal{A}-differentiable,
(1) $\frac{d}{d \zeta}(f+g)=\frac{d f}{d \zeta}+\frac{d g}{d \zeta}$
(2) $d_{p}(f \star g)(h)=d_{p} f(h) \star g(p)+f(p) \star d_{p} g(h)$, and if \mathcal{A} commutative,

$$
\frac{d}{d \zeta}(f \star g)=\frac{d f}{d \zeta} \star g+f \star \frac{d g}{d \zeta}
$$

- $\frac{d}{d \zeta}[f(g(\zeta))]=\frac{d f}{d \zeta}(g(z)) \star \frac{d g}{d \zeta}$
(\mathcal{A} commutative, let $f(\zeta)=\zeta^{n}$ for $n \in \mathbb{N}$ then $f^{\prime}(\zeta)=n \zeta^{n-1}$
(0) Let $\Psi: \mathcal{A} \rightarrow \mathcal{B}$ be an isomorphism of unital, associative finite dimensional algebras over \mathbb{R}. If f is \mathcal{A} differentiable at p then $g=\psi \circ f \circ \Psi^{-1}$ is \mathcal{B}-differentiable at $\Psi(p)$. Moreover, $g^{\prime}(p)=\left(\Psi \circ f^{\prime} \circ \Psi^{-1}\right)(p)$.

Taylor's Theorem

Definition

Let $U \subseteq \mathcal{A}$ be an open set and $f: U \rightarrow \mathcal{A}$ an \mathcal{A}-differentiable function on U then we define $f^{\prime}: U \rightarrow \mathcal{A}$ by $f^{\prime}(p)=\left(d_{p} f\right)(1)$ for each $p \in U$. Higher derivatives are defined in the usual fashion: $f^{(k+1)}(p)=\left(d_{p} f^{(k)}\right)(1)$.

Theorem

If $f: \mathcal{A} \rightarrow \mathcal{A}$ is k-times \mathcal{A}-differentiable then

$$
\frac{\partial^{k} f}{\partial x_{i_{1}} \partial x_{i_{2}} \cdots \partial x_{i_{k}}}=\frac{\partial^{k} f}{\partial x_{1}^{k}} \star v_{i_{1}} \star v_{i_{2}} \star \cdots \star v_{i_{k}} .
$$

Theorem

Let \mathcal{A} be a commutative, unital, associative algebra over \mathbb{R}. If f is real analytic at $p \in \mathcal{A}$ then $f(p+h)=f(p)+f^{\prime}(p) \star h+\frac{1}{2} f^{\prime \prime}(p) \star h^{2}+\cdots+\frac{1}{k!} f^{(k)}(p) \star h^{k}+\cdots$ where $h^{2}=h \star h$ and $h^{k+1}=h^{k} \star h$ for $k=1,2, \ldots$.

on how PDEs arise from \mathcal{A}-differentiability

This was shown by Wagner in his 1948 Thesis, and an improved proof was given by Waterhouse in 1992. This can be extended to higher order:

Theorem

Let U be open in \mathcal{A} and suppose $f: U \rightarrow \mathcal{A}$ is twice \mathcal{A}-differentiable on U. If there exist $B_{i j} \in \mathbb{R}$ for which $\sum_{i, j} B_{i j} v_{i} \star v_{j}=0$ then $\sum_{i, j} B_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=0$.

Proof: suppose f is twice continuously \mathcal{A}-differentiable on $U \subset \mathcal{A}$ and suppose there exist $B_{i j} \in \mathbb{R}$ for which $\sum_{i, j} B_{i j} v_{i} \star v_{j}=0$. Multiply by $\frac{\partial^{2} f}{\partial x_{1}^{2}}$ to obtain:

$$
\sum_{i, j} B_{i j} \frac{\partial^{2} f}{\partial x_{1}^{2}} \star v_{i} \star v_{j}=0 \Rightarrow \sum_{i, j} B_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=0
$$

Example (\mathcal{A}-Laplace eqns for $\mathcal{A}=\mathbb{C}$ are the usual Laplace Equations)

Consider $\mathcal{A}=\mathbb{R} \oplus i \mathbb{R}$ where $i^{2}=-1$. Notice, we have multiplication table and Hessian matrix

	1	i
1	1	i
i	i	-1

\& \quad| | x | y |
| :---: | :---: | :---: |
| x | $f_{x x}$ | $f_{x y}$ |
| y | $f_{y x}$ | $f_{y y}$ |

If $f=u+i v$ then $f_{x x}=-f_{y y}$, provides $u_{x x}+u_{y y}=0$ and $v_{x x}+v_{y y}=0$.

Example (\mathcal{A}-Laplace eqns for 3 -hyperbolic numbers)
Consider $\mathcal{A}=\mathbb{R} \oplus j \mathbb{R} \oplus j^{2} \mathbb{R}$ where $j^{3}=1$. Notice, we have multiplication table and Hessian matrix

	1	j	j^{2}
1	1	j	j^{2}
j	j	j^{2}	1
j^{2}	j^{2}	1	j

	x	y	z
x	$f_{x x}$	$f_{x y}$	$f_{x z}$
y	$f_{y x}$	$f_{y y}$	$f_{y z}$
z	$f_{z x}$	$f_{y z}$	$f_{z z}$

Hence, $f_{x x}=f_{y z}, f_{x y}=f_{z z}, f_{x z}=f_{y y}$

an algebra for the wave equation

Consider the speed c wave equation $c^{2} u_{x x}=u_{t t}$. Let us find an algebra \mathcal{W}_{c} which takes the speed- c wave equation as its generalized Laplace Equation. Let $(x, t)=x+k t$ form a typical point in the algebra. What rule should we give to k ? Consider:

$$
c^{2} u_{x x}=u_{t t} \quad \leftrightarrow \quad c^{2}=k^{2}
$$

thus set $k^{2}=c^{2}$. The algebra $\mathcal{W}_{c}=\mathbb{R} \oplus k \mathbb{R}$ with $k^{2}=c^{2}$ has \mathcal{W}_{c}-differentiable functions $f=u+k v$ for which $c^{2} u_{x x}=u_{t t}$. Note $\mathcal{W}_{c} \approx \mathbb{R} \times \mathbb{R}$ is given by:

$$
\Phi(x+k t)=(x+c t, x-c t)
$$

If $F=\left(F_{1}, F_{2}\right)$ is $(\mathbb{R} \times \mathbb{R})$-differentiable then $F_{1}=F_{1}\left(x_{1}\right), F_{2}=F_{2}\left(x_{2}\right)$ and every \mathcal{W}_{c}-differentiable function is connected to such $F ; f=\Phi^{-1} \circ F \circ \Phi$.

$$
f(x+k t)=\frac{1}{2}\left(F_{1}(x+c t)+F_{2}(x-c t)\right)+\frac{k}{2 c}\left(F_{1}(x+c t)-F_{2}(x-c t)\right)
$$

d'Alembert's solution appears naturally in the function theory of \mathcal{W}_{c}

Conjugate Variables for Commutative \mathcal{A}

Alvarez-Parrilla, Frías-Armenta, López-González and Yee-Romero (PAGR)(2012),

Definition (conjugate variables)

Suppose \mathcal{A} has an invertible basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with $v_{1}=1$. If $\zeta=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}$ then we define the j-th conjugate of ζ as follows:

$$
\bar{\zeta}_{j}=\zeta-2 x_{j} v_{j}=x_{1}+\cdots+x_{j-1} v_{j-1}-x_{j} v_{j}+x_{j+1} v_{j+1}+\cdots+x_{n} v_{n}
$$

for $j=2,3 \ldots, n$.
However, I differ from (PAGR) in my construction of $\frac{\partial}{\partial \zeta}$

Definition (Wirtinger Derivatives for \mathcal{A})

Suppose $f: \mathcal{A} \rightarrow \mathcal{A}$ is \mathbb{R}-differentiable. Furthermore, suppose $\beta=\left\{1, v_{2}, \ldots, v_{n}\right\}$ is an invertible basis and $\zeta=x_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}$. We define

$$
\frac{\partial}{\partial \zeta}=\frac{1}{2}\left((3-n) \frac{\partial}{\partial x_{1}}+\frac{1}{v_{2}} \frac{\partial}{\partial x_{2}}+\cdots+\frac{1}{v_{n}} \frac{\partial}{\partial x_{n}}\right) \& \frac{\partial}{\partial \bar{\zeta}_{k}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-\frac{1}{v_{k}} \frac{\partial}{\partial x_{k}}\right)
$$

for $j=2,3, \ldots, n$.

Wirtinger Calculus for Commutative \mathcal{A}

Theorem

$$
\frac{\partial \zeta}{\partial \zeta}=1, \quad \frac{\partial \bar{\zeta}_{j}}{\partial \zeta}=0, \quad \frac{\partial \bar{\zeta}_{j}}{\partial \bar{\zeta}_{j}}=1, \quad \frac{\partial \bar{\zeta}_{j}}{\partial \bar{\zeta}_{k}}=0, \quad \frac{\partial \zeta}{\partial \bar{\zeta}_{j}}=0
$$

for all $j=2, \ldots, n$ and $k \neq j$. Note: PAGR had $\frac{n-2}{n}$ instead of 0

Theorem

Let $\beta=\left\{1, v_{2}, \ldots, v_{n}\right\}$ be an invertible basis for the commutative algebra \mathcal{A}. If $f: \mathcal{A} \rightarrow \mathcal{A}$ is \mathcal{A}-differentiable at p then $\frac{\partial f}{\partial \bar{\zeta}_{j}}=0$ for $j=2, \ldots, n$.

Proof:

$$
\frac{\partial f}{\partial \bar{\zeta}_{k}}=\frac{1}{2}\left(\frac{\partial f}{\partial x_{1}}-\frac{1}{v_{k}} \star \frac{\partial f}{\partial x_{k}}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x_{1}}-\frac{1}{v_{k}} \star \frac{\partial f}{\partial x_{1}} \star v_{k}\right)=0
$$

as \mathcal{A} is assumed commutative and $\frac{1}{v_{k}} \star v_{k}=1 . \square$

a nowhere holomorphic function on \mathcal{A}

Example

Suppose $\operatorname{dim}(\mathcal{A}) \geq 2$. Let $f(\zeta)=\zeta \bar{\zeta}_{2}$ where $f: \mathcal{A} \rightarrow \mathcal{A}$ then

$$
\frac{\partial f}{\partial \zeta}=\frac{\partial \zeta^{\prime}}{\partial \zeta} \bar{\zeta}_{2}+\zeta \frac{\partial \bar{\zeta}_{2}}{\partial \zeta}=\bar{\zeta}_{2} \quad \& \quad \frac{\partial f}{\partial \bar{\zeta}_{2}}=\frac{\partial \zeta}{\partial \bar{\zeta}_{2}} \bar{\zeta}_{2}+\zeta \frac{\partial \bar{\zeta}_{2}}{\partial \bar{\zeta}_{2}}=\zeta
$$

This function is only \mathcal{A}-differentiable at the origin. In the usual complex analysis it is simply the square of the modulus; $f(z)=z \bar{z}=x^{2}+y^{2}$ where $z=x+i y$ has $\bar{z}_{2}=x-i y$.

Laplace Equations for 3-hyperbolic numbers

Consider $\mathcal{A}=\mathbb{R} \oplus j \mathbb{R} \oplus j^{2} \mathbb{R}$ where $j^{3}=1, \zeta=x+j y+z j^{2}$ and $\bar{\zeta}_{2}=x-j y+j^{2} z$ and $\bar{\zeta}_{3}=x+j y-j^{2} z$.

$$
\begin{aligned}
& \frac{\partial}{\partial \zeta}=\frac{1}{2}\left[j \frac{\partial}{\partial y}+j^{2} \frac{\partial}{\partial z}\right] \& \frac{\partial}{\partial \bar{\zeta}_{2}}=\frac{1}{2}\left[\frac{\partial}{\partial x}-j^{2} \frac{\partial}{\partial y}\right] \& \frac{\partial}{\partial \bar{\zeta}_{3}}=\frac{1}{2}\left[\frac{\partial}{\partial x}-j \frac{\partial}{\partial z}\right] . \\
& \frac{\partial^{2}}{\partial x^{2}}-\frac{\partial}{\partial y} \frac{\partial}{\partial z}=2\left(\frac{\partial}{\partial \zeta} \frac{\partial}{\partial \bar{\zeta}_{2}}+\frac{\partial}{\partial \zeta} \frac{\partial}{\partial \bar{\zeta}_{3}}+\frac{\partial^{2}}{\partial \bar{\zeta}_{2}^{2}}\right) \\
& \frac{\partial^{2}}{\partial y^{2}}-\frac{\partial}{\partial z} \frac{\partial}{\partial x}=2 j^{2}\left(-2 \frac{\partial}{\partial \zeta} \frac{\partial}{\partial \bar{\zeta}_{2}}+\frac{\partial}{\partial \zeta} \frac{\partial}{\partial \bar{\zeta}_{3}}-\frac{\partial}{\partial \bar{\zeta}_{2}} \frac{\partial}{\partial \bar{\zeta}_{3}}+\frac{\partial^{2}}{\partial \bar{\zeta}_{3}^{2}}\right) \\
& \frac{\partial^{2}}{\partial z^{2}}-\frac{\partial}{\partial x} \frac{\partial}{\partial y}=2 j\left(-2 \frac{\partial}{\partial \zeta} \frac{\partial}{\partial \bar{\zeta}_{3}}+\frac{\partial}{\partial \zeta} \frac{\partial}{\partial \bar{\zeta}_{2}}-\frac{\partial}{\partial \bar{\zeta}_{2}} \frac{\partial}{\partial \bar{\zeta}_{3}}+\frac{\partial^{2}}{\partial \bar{\zeta}_{2}^{2}}\right)
\end{aligned}
$$

If $f=u+v j+j^{2} w$ is an \mathcal{A}-differentiable function then $\frac{\partial f}{\partial \bar{\zeta}_{2}}=0$ and $\frac{\partial f}{\partial \widetilde{\zeta}_{3}}=0$. It follows that the component functions of f must solve the corresponding PDEs:

$$
\Phi_{x x}-\Phi_{y z}=0, \quad \Phi_{y y}-\Phi_{z x}=0, \quad \phi_{z z}-\Phi_{x y}=0 .
$$

These are the generalized Laplace Equations for the 3-hyperbolic numbers.

how to change a real PDE to an \mathcal{A}-ODE (sometimes)

> Theorem
> $\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial \zeta}+\frac{\partial}{\bar{\zeta}_{2}}+\cdots+\frac{\partial}{\bar{\zeta}_{n}}$ and $\frac{\partial}{\partial x_{k}}=v_{k}\left(\frac{\partial}{\partial \zeta}+\frac{\partial}{\bar{\zeta}_{2}}+\cdots+\frac{\partial}{\bar{\zeta}_{n}}-2 \frac{\partial}{\bar{\zeta}_{k}}\right)$
(1.) given a PDE in real independent variables $x_{1}, x_{2}, \ldots, x_{n}$ choose an algebra \mathcal{A} of dimension n to study in conjunction with the system.
(2.) convert the derivatives in the PDE with respect to $x_{1}, x_{2}, \ldots, x_{n}$ to derivatives with respect to the algebra variables $\zeta, \bar{\zeta}_{2}, \ldots, \bar{\zeta}_{n}$
(3.) impose that the derivatives with respect to $\bar{\zeta}_{2}, \ldots, \bar{\zeta}_{n}$ vanish, study the resulting ordinary differential equation in ζ. If possible, solve the \mathcal{A}-ODE which results.

integration on commutative \mathcal{A}

Theorem

If $\zeta:\left[t_{o}, t_{1}\right] \rightarrow \mathcal{A}$ is differentiable parametrization of a curve C and f is continuous near C then $\int_{C} f(\zeta) \star d \zeta=\int_{t_{0}}^{t_{f}} f(\zeta(t)) \star \frac{d \zeta}{d t} d t$.

For \mathcal{A} with norm- $\|\cdot\|$ there exists $m_{\mathcal{A}}>0$ such that $\|x \star y\| \leq m_{\mathcal{A}}\|x\|\|y\|$

Theorem

Let C be a rectifiable curve with arclength L. Suppose $\|f(\zeta)\| \leq M$ for each $\zeta \in C$ and suppose f is continuous near C. Then

$$
\left\|\int_{C} f(\zeta) \star d \zeta\right\| \leq m_{\mathcal{A}} M L
$$

where $m_{\mathcal{A}}$ is a constant such that $\|z \star w\| \leq m_{\mathcal{A}}\|z\|\|w\|$ for all $z, w \in \mathcal{A}$.

theorems of integration on commutative \mathcal{A}

Theorem

Suppose $f=\frac{d F}{d \zeta}$ near a curve C which begins at P and ends at Q then

$$
\int_{C} f(\zeta) \star d \zeta=F(Q)-F(P)
$$

Theorem

Let $f: U \rightarrow \mathcal{A}$ be a function where U is a connected subset of \mathcal{A} then the following are equivalent:
(i.) $\int_{C_{1}} f \star d \zeta=\int_{C_{2}} f \star d \zeta$ for all curves C_{1}, C_{2} in U beginning and ending at the same points,
(ii.) $\int_{C} f \star d \zeta=0$ for all loops in U,
(iii.) f has an antiderivative F for which $\frac{d F}{d \zeta}=f$ on U.

theorems of integration on on commutative \mathcal{A}

Theorem

Let $f: U \rightarrow \mathcal{A}$ be a function where U is a simply connected subset of commutative \mathcal{A} and suppose f is continuously differentiable in the real Frechet sense. The \mathcal{A}-valued one-form $f \star d \zeta$ is exact if and only if f is \mathcal{A}-differentiable.

Proof: Let $d \zeta=v_{1} d x_{1}+\cdots+v_{n} d x_{n}$ and note \mathcal{A} commutative gives $d \zeta \wedge d \zeta=0$. Suppose f is \mathcal{A}-differentiable:

$$
\begin{aligned}
d(f \star d \zeta) & =d f \wedge d \zeta \\
& =\left(\partial_{1} f d x_{1}+\partial_{2} f d x_{2}+\cdots \partial_{n} f d x_{n}\right) \wedge d \zeta \\
& =\left(\partial_{1} f d x_{1}+\partial_{1} f \star v_{2} d x_{2}+\cdots+\partial_{1} f \star v_{n} d x_{n}\right) \wedge d \zeta \\
& =\partial_{1} f \star d \zeta \wedge d \zeta \\
& =0
\end{aligned}
$$

Thus $f \star d \zeta$ is exact by Poincare's Lemma. Conversely, if there exists ϕ for which $d \phi=f \star d \zeta$ and it follows $f \star v_{j}=\partial_{j} \phi$ and as $v_{1}=1$ we find $f=\partial_{1} \phi$ thus

$$
\partial_{j} f=\partial_{j} \partial_{1} \phi=\partial_{1} \partial_{j} \phi=\partial_{1}\left(f \star v_{j}\right)=\left(\partial_{1} f\right) \star v_{j}
$$

Thus f is \mathcal{A}-differentiable. \square

theorems of integration on commutative \mathcal{A}

Theorem (Cauchy's Integral Theorem)

If $U \subseteq \mathcal{A}$ is simply connected then $\int_{C} f \star d \zeta=0$ for all loops C in U if and only if f is \mathcal{A}-differentiable on U.

Theorem (FTC part I for \mathcal{A})
Let C be a differentiable curve from ζ_{o} to ζ in $U \subseteq \mathcal{A}$ where U is an open simply connected subset of \mathcal{A}. Assume f is \mathcal{A} differentiable on U then

$$
\frac{d}{d \zeta} \int_{C} f(\eta) \star d \eta=f(\zeta)
$$

Theorem (real smooth and \mathcal{A}-differentiable imply \mathcal{A}-smooth)

Let \mathcal{A} be a commutative unital finite dimensional algebra over \mathbb{R}. Suppose $f: \mathcal{A} \rightarrow \mathcal{A}$ has arbitrarily many continuous real derivatives at p and suppose f is once \mathcal{A}-differentiable at p then $f^{(k)}(p)$ exists for all $k \in \mathbb{N}$.

Proof: Suppose \mathcal{A} has $\beta=\left\{1, \ldots, v_{n}\right\}$. Assume inductively that $f^{(k)}(p)$ exists hence $f^{(k)}(p)=\frac{\partial^{k} f(p)}{\partial x_{1}^{k}}$. Consider, omitting p to reduce clutter,

$$
\frac{\partial f^{(k)}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left[\frac{\partial^{k} f}{\partial x_{1}^{k}}\right]=\frac{\partial^{k}}{\partial x_{1}^{k}}\left[\frac{\partial f}{\partial x_{j}}\right]=\frac{\partial^{k}}{\partial x_{1}^{k}}\left[\frac{\partial f}{\partial x_{1}}\right] \star v_{j}=\frac{\partial f^{(k)}}{\partial x_{1}} \star v_{j}
$$

Thus $f^{(k)}$ is \mathcal{A}-differentiable at p which proves $f^{(k+1)}(p)$ exists. \square

Theorem

If $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ and ζ_{k} serves as \mathcal{A}_{k} variable for $k=1$, 2. If $F: \mathcal{A} \rightarrow \mathcal{A}$ is \mathcal{A}-differentiable then $F=\left(F_{1}, F_{2}\right)$ where $F_{1}=F_{1}\left(\zeta_{1}\right)$ and $F_{2}=F_{2}\left(\zeta_{2}\right)$

If \mathcal{A} picks up \mathbb{R} as a factor then \mathcal{A} cannot have a Cauchy's Integral Formula.

Further Results with Daniel Freese on \mathcal{A}

Here we mostly assume \mathcal{A} is commutative.

- Theory of sequences and series including Cauchy criterion, product theorem, modified ratio and root tests etc.
- Theory of power series over \mathcal{A}. Weird behaviour as regards to zero divisors, but, for units almost the usual story. Weierstrauss M-test for normal convergence.
- Theory of elementary functions; exponential, sine, cosine, sinh and cosh.
- If \mathcal{A} is generated by k with $k^{n}= \pm 1,0$ then

$$
e^{k x}=\cos (x)+k \sin _{1, n}(x)+\cdots+\sin _{n, n-1} k^{n-1}
$$

and we derive an identity $\operatorname{det}\left(M\left(e^{k x}\right)=1\right.$ which includes $\cos ^{2} x+\sin ^{2} x=1$ and $\cos ^{2} x+\sin ^{2} x=1$. More exciting, is $e^{j x}=I(x)+j m(x)+j^{2} c(x)$ where $\beta^{3}+m^{2}+c^{3}-3 / m c=1$ for the 3 -hyperbolic numbers. Many open questions remain in the theory of special functions over \mathcal{A}

- Details to be found in Theory of Series in the A-calculus and the n-Pythagorean Theorem in preparation (to appear on ArXiV soon)

Further Results with Nathan BeDell on \mathcal{A}

Here we mostly assume \mathcal{A} is commutative with $\operatorname{dim}(\mathcal{A})=N$

- (BeDell) further analysis of Freese's special functions. Also a theory of logarithms for a large class of associative, unital algebras over \mathbb{R}.
- theory of uniform convergence, term-by-term \mathcal{A}-integration and \mathcal{A}-differentiation theorems. Existence and uniqueness theorem and general solution set for \mathcal{A}-ODE. Proof uses usual Picard iteration adapted to the \mathcal{A}-integral
- theory of Wronskian for n-th order linear \mathcal{A}-ODE including the n-th order variation of parameter formula and Abel's Formula
- solution to general n-th order constant \mathcal{A}-coefficient \mathcal{A}-ODE. For $P(x) \in \mathcal{A}[x]$ we find $P(D)[y]=0$ has exponential solutions $e^{\lambda \zeta}$ corresponding to factor $D-\lambda$ in $P(D)$. However, some $P(D)$ are not split-linear over \mathcal{A} hence we use $\mathcal{A}^{\prime}=\mathcal{A}[k] /\langle P(k)\rangle$ with $\zeta \mapsto e^{k \zeta}$ and we show the \mathcal{A}-component functions are solutions to $P(D)[y]=0$.
- solution to $A \vec{\zeta}=\frac{d \vec{\zeta}}{d t}$ for any constant \mathcal{A}-valued matrix A via matrix exponential and e-vectors.
- Details to be found in Ordinary Differential Equations over Associative Algebras and Logarithms and Trigonometric Functions over Associative Algebras in preparation (to appear on ArXiV soon)

quaternions and \mathcal{A}-differentiability.

Consider $f(\zeta)=\zeta^{2}$ for quaterion variable $\zeta=t+i x+j y+k z$. Calculate,

$$
f(\zeta)=t^{2}-x^{2}-y^{2}-z^{2}+2 t(i x+j y+k z)
$$

We find:

$$
J_{f}=\left[\begin{array}{rrrr}
2 t & -2 x & -2 y & -2 z \\
2 x & 2 t & 0 & 0 \\
2 y & 0 & 2 t & 0 \\
2 z & 0 & 0 & 2 t
\end{array}\right] \text { vs. }\left[\begin{array}{rrrr}
a & -b & -c & -d \\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right] \in \mathrm{M}(\mathbb{H})
$$

For $\zeta \neq 0$, we see J_{f} is not in the regular representation of \mathbb{H}.

Theorem

Right \mathbb{H}-linear functions are \mathbb{H}-differentiable functions on \mathbb{H}.
Proof: let $f(\zeta)=\alpha \zeta$ then $f(\zeta+h)=\alpha(\zeta+h)=f(\zeta)+\alpha h$. Hence $d f(h)=\alpha h$ and $d f(h k)=\alpha(h k)=d f(h) k$.

differentiability over an algebra

Let $\mathcal{A}=\mathbb{R}^{6}$ with the following noncommutative multiplication:

$$
(a, b, c, d, e, f) \star(x, y, z, u, v, w)=(a x, b y, c z, a u+d y, b v+e z, a w+d v+f z)
$$

The regular representation of \mathcal{A} has typical element

$$
\mathbf{M}(a, b, c, d, e, f)=\left[\begin{array}{llllll}
a & 0 & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 & 0 \\
0 & d & 0 & a & 0 & 0 \\
0 & 0 & e & 0 & b & 0 \\
0 & 0 & f & 0 & d & a
\end{array}\right]
$$

Suppose \mathcal{A} has variables $\zeta=\left(x_{1}, \ldots, x_{6}\right)$ and define $f(\zeta)=\left(1,1,1,1,1, x_{3}^{2}\right)$ and define $g(\zeta)=\left(0,0,0, x_{2}, 0, x_{5}\right)$. Calculate

$$
(f \star g)(\zeta)=\left(0,0,0, x_{2}, 0, x_{5}\right) \quad \& \quad(g \star f)(\zeta)=\left(0,0,0, x_{2}, 0, x_{2}+x_{5}\right)
$$

Observe f and g are \mathcal{A}-differentiable and $f \star g=g$ is likewise \mathcal{A}-differentiable. In contrast, $g \star f$ is not \mathcal{A}-differentiable as its Jacobian matrix is nonzero in the (2, 6)-entry. (\mathcal{A} here is not simple, Rosenfeld's result does not apply)

references and acknowledgements

- this work would not be possible without the collaboration of my students: W. S. Leslie, M. L. Nguyen, B. Zhang and current N. BeDell and D. Freese
- A. Alvarez-Parrilla,M. E. Frías-Armenta, E. López-González, C. Yee-Romero, On Solving Systems of Autonomous Ordinary Differential Equations by Reduction to a Variable of an Algebra, International Journal of Mathematics and Mathematical Sciences Volume 2012, Article ID 753916, 21 pages (2012)
- P. M. Gadea, J. Grifone, J. Muñoz Masqué, Manifolds modelled over free modules over the double numbers, Acta Mathematica Hungarica, Volume 100, Issue 3, pp 187-203 (August 2003)
- B. Rosenfeld, Differentiable functions in associative and alternative algebras and smooth surfaces in projective spaces over these algebras, Publications De L'institut Mathematique. Nouvelle serie. 62(82), 67-71 (2000)
- THANKS! Questions ?

