$\mathcal A\text{-}\mathsf{Calculus}$ on a Real Associative Algebra

James S. Cook

Liberty University

January 6, 2017

a word on algebras and representations

- Algebra: A denotes a real n-dimensional vector space with an associative unital multiplication.
- **2 Right** A-**linear maps:** If $T : A \to A$ is a linear transformation with $T(v \star w) = T(v) \star w$ then $T \in \mathcal{L}_A$. Since $1 \in A$ we find:

$$T(v) = T(1 \star v) = T(1) \star v = L_{T(1)}(v)$$

- **3** Regular representation: If $M = [T]_{\beta}$ for $T \in \mathcal{L}_{\mathcal{A}}$ then $M \in M_{\mathcal{A}}(\beta)$.
- **③** Algebra Isomorphisms: $\mathcal{A} \simeq \mathcal{L}_{\mathcal{A}} \simeq M_{\mathcal{A}}(\beta)$. For $\mathcal{A} = \mathbb{R}^n$:

$$\alpha \longleftrightarrow \mathcal{L}_{\alpha} \longleftrightarrow [\alpha \star e_1 | \alpha \star e_2 | \cdots | \alpha \star e_n]$$

O Application to Quaternions:

$$a+bi+cj+dk \longleftrightarrow L_{a+bi+cj+dk} \longleftrightarrow \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix}$$

differentiability over an algebra

Definition

Let $U \subseteq A$ be an open set containing p. If $f : U \to A$ is a function then we say f is A-differentiable at p if there exists a linear function $d_p f \in \mathcal{L}_A$ such that

$$\lim_{h\to 0} \frac{f(p+h) - f(p) - d_p f(h)}{||h||} = 0.$$

Theorem (The A-Cauchy Riemann Equations)

If $f : A \to A$ is A-differentiable at p and A has basis $\{v_1, \ldots, v_n\}$ with $v_1 = 1$ and coordinates x_1, \ldots, x_n then $\frac{\partial f}{\partial x_k} = \frac{\partial f}{\partial x_1} \star v_k$ for $k = 2, \ldots, n$.

Proof: by definition $d_p f(v_k) = \frac{\partial f}{\partial x_k}$. If f is \mathcal{A} -differentiable at p then $d_p f$ exists and is right \mathcal{A} -linear and $d_p f(v_k) = d_p f(1) \star v_k$ thus $\frac{\partial f}{\partial x_k} = \frac{\partial f}{\partial x_1} \star v_k$. \Box

Observation: there are $n^2 - n$ generalized-CR equations

concerning differentiability via difference quotients

Definition

Let $f : \operatorname{dom}(f) \to \mathcal{A}$ be a function where $\operatorname{dom}(f)$ is open and $p \in \operatorname{dom}(f)$. (1.) If f is \mathcal{A} -differentiable at p then f is D_1 at p. (2.) If $\lim_{\mathcal{A}^{\times} \ni \zeta \to p} \frac{f(\zeta) - f(p)}{\zeta - p}$ exists then f is D_2 at p.

Theorem

Let U be an open set in A. If f is D_2 at each point in U then f is D_1 on U.

However, in $\mathcal{A} = \mathbb{R} \oplus \epsilon \mathbb{R}$ with $\epsilon^2 = 0$ the function $f(\zeta) = \zeta$ is **nowhere** D_2 .

Theorem

Let U be an open set in a commutative semisimple finite dimensional real algebra A. The set of D_1 functions on U coincides with the set of D_2 functions on U.

connecting the $\mathcal{A}\text{-}\mathsf{CR}$ equations and $\mathsf{M}_{\mathcal{A}}$

• Let
$$\mathcal{A} = \mathbb{C}$$
. If $f = u + iv \in C_{\mathcal{A}}(\mathcal{A})$ then $J_f = \begin{bmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{bmatrix}$. Note,
 $J_f \in M_{\mathcal{A}}$ implies $J_f = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ thus $\underbrace{\partial_x u = \partial_y v}_{CR \text{ eqs.}}, \underbrace{\partial_x v = -\partial_y u}_{CR \text{ eqs.}}.$

• If
$$\mathcal{A} = \mathbb{R} \oplus j\mathbb{R} \oplus j^2\mathbb{R}$$
 then $M_{\mathcal{A}}$ has matrices with form $\begin{bmatrix} a & c & b \\ b & a & c \\ c & b & a \end{bmatrix}$. If $f = u + jv + j^2w \in C_{\mathcal{A}}(\mathcal{A})$ then six CR eqns. follow:

$$\mathsf{J}_{f} = \begin{bmatrix} u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \\ w_{x} & w_{y} & w_{z} \end{bmatrix} = \begin{bmatrix} u_{x} & w_{x} & v_{x} \\ v_{x} & u_{x} & w_{x} \\ w_{x} & v_{x} & u_{x} \end{bmatrix} \Rightarrow \underbrace{\begin{matrix} u_{x} = v_{y} = w_{z} \\ v_{x} = u_{y} = v_{z} \\ w_{x} = u_{y} = v_{z} \\ \mathsf{CR eqs.} \end{bmatrix}$$

differential A-calculus:

Suppose that f and g are A-differentiable,

$$\frac{d}{d\zeta}(f\star g) = \frac{df}{d\zeta}\star g + f\star \frac{dg}{d\zeta}$$

• A commutative, let $f(\zeta) = \zeta^n$ for $n \in \mathbb{N}$ then $f'(\zeta) = n\zeta^{n-1}$

O Let Ψ : A → B be an isomorphism of unital, associative finite dimensional algebras over ℝ. If f is A differentiable at p then g = Ψ ∘ f ∘ Ψ⁻¹ is B-differentiable at Ψ(p). Moreover, g'(p) = (Ψ ∘ f' ∘ Ψ⁻¹)(p).

Taylor's Theorem

Definition

Let $U \subseteq A$ be an open set and $f: U \to A$ an A-differentiable function on U then we define $f': U \to A$ by $f'(p) = (d_p f)(1)$ for each $p \in U$. Higher derivatives are defined in the usual fashion: $f^{(k+1)}(p) = (d_p f^{(k)})(1)$.

Theorem

If $f:\mathcal{A}\to\mathcal{A}$ is k-times $\mathcal{A}\text{-differentiable}$ then

$$\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_k}} = \frac{\partial^k f}{\partial x_1^k} \star v_{i_1} \star v_{i_2} \star \cdots \star v_{i_k}.$$

Theorem

Let \mathcal{A} be a commutative, unital, associative algebra over \mathbb{R} . If f is real analytic at $p \in \mathcal{A}$ then $f(p+h) = f(p) + f'(p) \star h + \frac{1}{2}f''(p) \star h^2 + \cdots + \frac{1}{k!}f^{(k)}(p) \star h^k + \cdots$ where $h^2 = h \star h$ and $h^{k+1} = h^k \star h$ for $k = 1, 2, \ldots$.

on how PDEs arise from A-differentiability

This was shown by Wagner in his 1948 Thesis, and an improved proof was given by Waterhouse in 1992. This can be extended to higher order:

Theorem

Let U be open in A and suppose $f: U \to A$ is twice A-differentiable on U. If there exist $B_{ij} \in \mathbb{R}$ for which $\sum_{i,j} B_{ij}v_i \star v_j = 0$ then $\sum_{i,j} B_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j} = 0$.

Proof: suppose f is twice continuously \mathcal{A} -differentiable on $U \subset \mathcal{A}$ and suppose there exist $B_{ij} \in \mathbb{R}$ for which $\sum_{i,j} B_{ij} v_i \star v_j = 0$. Multiply by $\frac{\partial^2 f}{\partial x_i^2}$ to obtain:

$$\sum_{i,j} B_{ij} \frac{\partial^2 f}{\partial x_1^2} \star v_i \star v_j = 0 \quad \Rightarrow \quad \sum_{i,j} B_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j} = 0.$$

Example (A-Laplace eqns for $A = \mathbb{C}$ are the usual Laplace Equations)

Consider $\mathcal{A} = \mathbb{R} \oplus i\mathbb{R}$ where $i^2 = -1$. Notice, we have multiplication table and Hessian matrix

If f = u + iv then $f_{xx} = -f_{yy}$, provides $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$.

Example (A-Laplace eqns for 3-hyperbolic numbers)

Consider $\mathcal{A} = \mathbb{R} \oplus j\mathbb{R} \oplus j^2\mathbb{R}$ where $j^3 = 1$. Notice, we have multiplication table and Hessian matrix

Hence, $f_{xx} = f_{yz}$, $f_{xy} = f_{zz}$, $f_{xz} = f_{yy}$

an algebra for the wave equation

Consider the speed *c* wave equation $c^2 u_{xx} = u_{tt}$. Let us find an algebra W_c which takes the speed-*c* wave equation as its generalized Laplace Equation. Let (x, t) = x + kt form a typical point in the algebra. What rule should we give to k? Consider:

$$c^2 u_{xx} = u_{tt} \quad \leftrightarrow \quad c^2 = k^2$$

thus set $k^2 = c^2$. The algebra $\mathcal{W}_c = \mathbb{R} \oplus k\mathbb{R}$ with $k^2 = c^2$ has \mathcal{W}_c -differentiable functions f = u + kv for which $c^2 u_{xx} = u_{tt}$. Note $\mathcal{W}_c \approx \mathbb{R} \times \mathbb{R}$ is given by:

$$\Phi(x+kt)=(x+ct,x-ct)$$

If $F = (F_1, F_2)$ is $(\mathbb{R} \times \mathbb{R})$ -differentiable then $F_1 = F_1(x_1), F_2 = F_2(x_2)$ and every \mathcal{W}_c -differentiable function is connected to such F; $f = \Phi^{-1} \circ F \circ \Phi$.

$$f(x+kt) = \frac{1}{2}(F_1(x+ct) + F_2(x-ct)) + \frac{k}{2c}(F_1(x+ct) - F_2(x-ct))$$

d'Alembert's solution appears naturally in the function theory of \mathcal{W}_c

Conjugate Variables for Commutative \mathcal{A}

Alvarez-Parrilla, Frías-Armenta, López-González and Yee-Romero (PAGR)(2012),

Definition (conjugate variables)

Suppose \mathcal{A} has an invertible basis $\beta = \{v_1, v_2, \dots, v_n\}$ with $v_1 = 1$. If $\zeta = x_1v_1 + x_2v_2 + \dots + x_nv_n$ then we define the *j*-th conjugate of ζ as follows:

$$\overline{\zeta}_{j} = \zeta - 2x_{j}v_{j} = x_{1} + \dots + x_{j-1}v_{j-1} - x_{j}v_{j} + x_{j+1}v_{j+1} + \dots + x_{n}v_{n}$$

for j = 2, 3..., n.

However, I differ from (PAGR) in my construction of $\frac{\partial}{\partial \zeta}$

Definition (Wirtinger Derivatives for A)

Suppose $f : A \to A$ is \mathbb{R} -differentiable. Furthermore, suppose $\beta = \{1, v_2, \dots, v_n\}$ is an invertible basis and $\zeta = x_1 + x_2v_2 + \dots + x_nv_n$. We define

$$\frac{\partial}{\partial \zeta} = \frac{1}{2} \left((3-n)\frac{\partial}{\partial x_1} + \frac{1}{v_2}\frac{\partial}{\partial x_2} + \dots + \frac{1}{v_n}\frac{\partial}{\partial x_n} \right) \& \frac{\partial}{\partial \overline{\zeta}_k} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - \frac{1}{v_k}\frac{\partial}{\partial x_k} \right)$$

for $j = 2, 3, \dots, n$.

Wirtinger Calculus for Commutative \mathcal{A}

Theorem

$$\frac{\partial \zeta}{\partial \zeta} = 1, \quad \frac{\partial \zeta_j}{\partial \zeta} = \mathbf{0}, \quad \frac{\partial \zeta_j}{\partial \overline{\zeta}_i} = 1, \quad \frac{\partial \zeta_j}{\partial \overline{\zeta}_k} = \mathbf{0}, \quad \frac{\partial \zeta}{\partial \overline{\zeta}_i} = \mathbf{0}$$

for all j = 2, ..., n and $k \neq j$. Note: PAGR had $\frac{n-2}{n}$ instead of 0

Theorem

Let $\beta = \{1, v_2, \dots, v_n\}$ be an invertible basis for the commutative algebra \mathcal{A} . If $f : \mathcal{A} \to \mathcal{A}$ is \mathcal{A} -differentiable at p then $\frac{\partial f}{\partial \overline{\zeta_j}} = 0$ for $j = 2, \dots, n$.

Proof:

$$\frac{\partial f}{\partial \overline{\zeta}_k} = \frac{1}{2} \left(\frac{\partial f}{\partial x_1} - \frac{1}{v_k} \star \frac{\partial f}{\partial x_k} \right) = \frac{1}{2} \left(\frac{\partial f}{\partial x_1} - \frac{1}{v_k} \star \frac{\partial f}{\partial x_1} \star v_k \right) = 0$$

as \mathcal{A} is assumed commutative and $\frac{1}{v_k} \star v_k = 1$. \Box

a nowhere holomorphic function on $\ensuremath{\mathcal{A}}$

Example

Suppose dim $(\mathcal{A}) \geq 2$. Let $f(\zeta) = \zeta \overline{\zeta}_2$ where $f : \mathcal{A} \to \mathcal{A}$ then

$$\frac{\partial f}{\partial \zeta} = \frac{\partial \zeta}{\partial \zeta} \overline{\zeta}_2 + \zeta \frac{\partial \overline{\zeta}_2}{\partial \zeta} = \overline{\zeta}_2 \qquad \& \qquad \frac{\partial f}{\partial \overline{\zeta}_2} = \frac{\partial \zeta}{\partial \overline{\zeta}_2} \overline{\zeta}_2 + \zeta \frac{\partial \overline{\zeta}_2}{\partial \overline{\zeta}_2} = \zeta$$

This function is only A-differentiable at the origin. In the usual complex analysis it is simply the square of the modulus; $f(z) = z\overline{z} = x^2 + y^2$ where z = x + iy has $\overline{z}_2 = x - iy$.

Laplace Equations for 3-hyperbolic numbers

Consider $\mathcal{A} = \mathbb{R} \oplus j\mathbb{R} \oplus j^2\mathbb{R}$ where $j^3 = 1$, $\zeta = x + jy + zj^2$ and $\overline{\zeta}_2 = x - jy + j^2z$ and $\overline{\zeta}_3 = x + jy - j^2z$.

$$\frac{\partial}{\partial \zeta} = \frac{1}{2} \left[j \frac{\partial}{\partial y} + j^2 \frac{\partial}{\partial z} \right] \quad \& \quad \frac{\partial}{\partial \overline{\zeta}_2} = \frac{1}{2} \left[\frac{\partial}{\partial x} - j^2 \frac{\partial}{\partial y} \right] \quad \& \quad \frac{\partial}{\partial \overline{\zeta}_3} = \frac{1}{2} \left[\frac{\partial}{\partial x} - j \frac{\partial}{\partial z} \right]$$

$$\frac{\partial^2}{\partial x^2} - \frac{\partial}{\partial y} \frac{\partial}{\partial z} = 2\left(\frac{\partial}{\partial \zeta} \frac{\partial}{\partial \overline{\zeta}_2} + \frac{\partial}{\partial \zeta} \frac{\partial}{\partial \overline{\zeta}_3} + \frac{\partial^2}{\partial \overline{\zeta}_2^2}\right)$$
$$\frac{\partial^2}{\partial y^2} - \frac{\partial}{\partial z} \frac{\partial}{\partial x} = 2j^2 \left(-2\frac{\partial}{\partial \zeta} \frac{\partial}{\partial \overline{\zeta}_2} + \frac{\partial}{\partial \zeta} \frac{\partial}{\partial \overline{\zeta}_3} - \frac{\partial}{\partial \overline{\zeta}_2} \frac{\partial}{\partial \overline{\zeta}_3} + \frac{\partial^2}{\partial \overline{\zeta}_3^2}\right)$$
$$\frac{\partial^2}{\partial z^2} - \frac{\partial}{\partial x} \frac{\partial}{\partial y} = 2j \left(-2\frac{\partial}{\partial \zeta} \frac{\partial}{\partial \overline{\zeta}_3} + \frac{\partial}{\partial \zeta} \frac{\partial}{\partial \overline{\zeta}_2} - \frac{\partial}{\partial \overline{\zeta}_2} \frac{\partial}{\partial \overline{\zeta}_3} + \frac{\partial^2}{\partial \overline{\zeta}_2^2}\right)$$

If $f = u + vj + j^2w$ is an \mathcal{A} -differentiable function then $\frac{\partial f}{\partial \overline{\zeta}_2} = 0$ and $\frac{\partial f}{\partial \overline{\zeta}_3} = 0$. It follows that the component functions of f must solve the corresponding PDEs:

$$\Phi_{xx} - \Phi_{yz} = 0, \quad \Phi_{yy} - \Phi_{zx} = 0, \quad \Phi_{zz} - \Phi_{xy} = 0.$$

These are the generalized Laplace Equations for the 3-hyperbolic numbers.

how to change a real PDE to an A-ODE (sometimes)

Theorem

$$\frac{\partial}{\partial x_1} = \frac{\partial}{\partial \zeta} + \frac{\partial}{\overline{\zeta}_2} + \dots + \frac{\partial}{\overline{\zeta}_n} \quad and \quad \frac{\partial}{\partial x_k} = v_k \left(\frac{\partial}{\partial \zeta} + \frac{\partial}{\overline{\zeta}_2} + \dots + \frac{\partial}{\overline{\zeta}_n} - 2\frac{\partial}{\overline{\zeta}_k} \right)$$

- given a PDE in real independent variables x₁, x₂,..., x_n choose an algebra A of dimension n to study in conjunction with the system.
- (2.) convert the derivatives in the PDE with respect to x₁, x₂,..., x_n to derivatives with respect to the algebra variables ζ, ζ₂,..., ζ_n
- (3.) impose that the derivatives with respect to $\overline{\zeta}_2, \ldots, \overline{\zeta}_n$ vanish, study the resulting ordinary differential equation in ζ . If possible, solve the \mathcal{A} -ODE which results.

integration on commutative ${\cal A}$

Theorem

If $\zeta : [t_o, t_1] \to \mathcal{A}$ is differentiable parametrization of a curve C and f is continuous near C then $\int_C f(\zeta) \star d\zeta = \int_{t_o}^{t_f} f(\zeta(t)) \star \frac{d\zeta}{dt} dt$.

For $\mathcal A$ with norm- $\|\cdot\|$ there exists $m_{\mathcal A}>0$ such that $\|x\star y\|\leq m_{\mathcal A}\|x\|\|y\|$

Theorem

Let C be a rectifiable curve with arclength L. Suppose $||f(\zeta)|| \le M$ for each $\zeta \in C$ and suppose f is continuous near C. Then

$$\left\|\int_C f(\zeta) \star d\zeta\right\| \leq m_{\mathcal{A}} ML$$

where $m_{\mathcal{A}}$ is a constant such that $||z \star w|| \leq m_{\mathcal{A}} ||z|| ||w||$ for all $z, w \in \mathcal{A}$.

theorems of integration on commutative ${\cal A}$

Theorem

Suppose $f = \frac{dF}{d\zeta}$ near a curve C which begins at P and ends at Q then

$$\int_C f(\zeta) \star d\zeta = F(Q) - F(P).$$

Theorem

Let $f: U \to A$ be a function where U is a connected subset of A then the following are equivalent:

(i.) $\int_{C_1} f \star d\zeta = \int_{C_2} f \star d\zeta$ for all curves C_1, C_2 in U beginning and ending at the same points,

(ii.)
$$\int_C f \star d\zeta = 0$$
 for all loops in U,

(iii.) f has an antiderivative F for which $\frac{dF}{dC} = f$ on U.

theorems of integration on on commutative ${\cal A}$

Theorem

Let $f: U \to A$ be a function where U is a simply connected subset of commutative A and suppose f is continuously differentiable in the real Frechet sense. The A-valued one-form $f \star d\zeta$ is exact if and only if f is A-differentiable.

Proof: Let $d\zeta = v_1 dx_1 + \cdots + v_n dx_n$ and note \mathcal{A} commutative gives $d\zeta \wedge d\zeta = 0$. Suppose f is \mathcal{A} -differentiable:

$$d(f \star d\zeta) = df \wedge d\zeta$$

= $(\partial_1 f \, dx_1 + \partial_2 f \, dx_2 + \dots + \partial_n f \, dx_n) \wedge d\zeta$
= $(\partial_1 f dx_1 + \partial_1 f \star v_2 dx_2 + \dots + \partial_1 f \star v_n dx_n) \wedge d\zeta$
= $\partial_1 f \star d\zeta \wedge d\zeta$
= 0.

Thus $f \star d\zeta$ is exact by Poincare's Lemma. Conversely, if there exists ϕ for which $d\phi = f \star d\zeta$ and it follows $f \star v_j = \partial_j \phi$ and as $v_1 = 1$ we find $f = \partial_1 \phi$ thus

$$\partial_j f = \partial_j \partial_1 \phi = \partial_1 \partial_j \phi = \partial_1 (f \star v_j) = (\partial_1 f) \star v_j$$

Thus f is A-differentiable. \Box

theorems of integration on commutative ${\cal A}$

Theorem (Cauchy's Integral Theorem)

If $U \subseteq A$ is simply connected then $\int_C f \star d\zeta = 0$ for all loops C in U if and only if f is A-differentiable on U.

Theorem (FTC part I for A)

Let C be a differentiable curve from ζ_o to ζ in $U \subseteq A$ where U is an open simply connected subset of A. Assume f is A differentiable on U then

$$\frac{d}{d\zeta}\int_C f(\eta)\star d\eta=f(\zeta).$$

Theorem (real smooth and A-differentiable imply A-smooth)

Let \mathcal{A} be a commutative unital finite dimensional algebra over \mathbb{R} . Suppose $f : \mathcal{A} \to \mathcal{A}$ has arbitrarily many continuous real derivatives at p and suppose f is once \mathcal{A} -differentiable at p then $f^{(k)}(p)$ exists for all $k \in \mathbb{N}$.

Proof: Suppose \mathcal{A} has $\beta = \{1, ..., v_n\}$. Assume inductively that $f^{(k)}(p)$ exists hence $f^{(k)}(p) = \frac{\partial^k f(p)}{\partial x_1^k}$. Consider, omitting p to reduce clutter,

$$\frac{\partial f^{(k)}}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\frac{\partial^k f}{\partial x_1^k} \right] = \frac{\partial^k}{\partial x_1^k} \left[\frac{\partial f}{\partial x_j} \right] = \frac{\partial^k}{\partial x_1^k} \left[\frac{\partial f}{\partial x_1} \right] \star v_j = \frac{\partial f^{(k)}}{\partial x_1} \star v_j.$$

Thus $f^{(k)}$ is A-differentiable at p which proves $f^{(k+1)}(p)$ exists. \Box

Theorem

If $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ and ζ_k serves as \mathcal{A}_k variable for k = 1, 2. If $F : \mathcal{A} \to \mathcal{A}$ is \mathcal{A} -differentiable then $F = (F_1, F_2)$ where $F_1 = F_1(\zeta_1)$ and $F_2 = F_2(\zeta_2)$

If ${\mathcal A}$ picks up ${\mathbb R}$ as a factor then ${\mathcal A}$ cannot have a Cauchy's Integral Formula.

Further Results with Daniel Freese on \mathcal{A}

Here we mostly assume \mathcal{A} is commutative.

- Theory of sequences and series including Cauchy criterion, product theorem, modified ratio and root tests etc.
- Theory of power series over A. Weird behaviour as regards to zero divisors, but, for units almost the usual story. Weierstrauss *M*-test for normal convergence.
- Theory of elementary functions; exponential, sine, cosine, sinh and cosh.
- If \mathcal{A} is generated by k with $k^n = \pm 1, 0$ then

$$e^{kx} = \cos(x) + k \sin_{1,n}(x) + \dots + \sin_{n,n-1} k^{n-1}$$

and we derive an identity $\det(M(e^{kx}) = 1)$ which includes $\cos^2 x + \sin^2 x = 1$ and $\cos^2 x + \sin^2 x = 1$. More exciting, is $e^{jx} = l(x) + jm(x) + j^2c(x)$ where $l^3 + m^2 + c^3 - 3lmc = 1$ for the 3-hyperbolic numbers. Many open questions remain in the theory of special functions over \mathcal{A}

• Details to be found in *Theory of Series in the A-calculus and the n-Pythagorean Theorem* in preparation (to appear on ArXiV soon)

Further Results with Nathan BeDell on $\mathcal A$

Here we mostly assume \mathcal{A} is commutative with dim $(\mathcal{A}) = N$

- (BeDell) further analysis of Freese's special functions. Also a theory of logarithms for a large class of associative, unital algebras over \mathbb{R} .
- theory of uniform convergence, term-by-term \mathcal{A} -integration and \mathcal{A} -differentiation theorems. Existence and uniqueness theorem and general solution set for \mathcal{A} -ODE. Proof uses usual Picard iteration adapted to the \mathcal{A} -integral
- theory of Wronskian for *n*-th order linear *A*-ODE including the *n*-th order variation of parameter formula and Abel's Formula
- solution to general *n*-th order constant *A*-coefficient *A*-ODE. For *P*(*x*) ∈ *A*[*x*] we find *P*(*D*)[*y*] = 0 has exponential solutions *e*^{λζ} corresponding to factor *D* − λ in *P*(*D*). However, some *P*(*D*) are not split-linear over *A* hence we use *A*' = *A*[*k*]/⟨*P*(*k*)⟩ with ζ → *e*^{*k*ζ} and we show the *A*-component functions are solutions to *P*(*D*)[*y*] = 0.
- solution to $A\vec{\zeta} = \frac{d\vec{\zeta}}{dt}$ for any constant A-valued matrix A via matrix exponential and e-vectors.
- Details to be found in Ordinary Differential Equations over Associative Algebras and Logarithms and Trigonometric Functions over Associative Algebras in preparation (to appear on ArXiV soon)

quaternions and \mathcal{A} -differentiability.

Consider $f(\zeta) = \zeta^2$ for quaterion variable $\zeta = t + ix + jy + kz$. Calculate, $f(\zeta) = t^2 - x^2 - y^2 - z^2 + 2t(ix + jy + kz)$

We find:

$$J_{f} = \begin{bmatrix} 2t & -2x & -2y & -2z \\ 2x & 2t & 0 & 0 \\ 2y & 0 & 2t & 0 \\ 2z & 0 & 0 & 2t \end{bmatrix} \text{ vs. } \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} \in \mathsf{M}(\mathbb{H})$$

For $\zeta \neq 0$, we see J_f is **not** in the regular representation of \mathbb{H} .

Theorem

Right \mathbb{H} -linear functions are \mathbb{H} -differentiable functions on \mathbb{H} .

Proof: let $f(\zeta) = \alpha \zeta$ then $f(\zeta + h) = \alpha(\zeta + h) = f(\zeta) + \alpha h$. Hence $df(h) = \alpha h$ and $df(hk) = \alpha(hk) = df(h)k$.

differentiability over an algebra

Let $\mathcal{A} = \mathbb{R}^6$ with the following noncommutative multiplication:

 $(a, b, c, d, e, f) \star (x, y, z, u, v, w) = (ax, by, cz, au + dy, bv + ez, aw + dv + fz)$

The regular representation of $\mathcal A$ has typical element

$$\mathbf{M}(a, b, c, d, e, f) = \begin{bmatrix} a & 0 & 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 & 0 \\ 0 & 0 & c & 0 & 0 & 0 \\ 0 & d & 0 & a & 0 & 0 \\ 0 & 0 & e & 0 & b & 0 \\ 0 & 0 & f & 0 & d & a \end{bmatrix}$$

Suppose A has variables $\zeta = (x_1, \ldots, x_6)$ and define $f(\zeta) = (1, 1, 1, 1, 1, x_3^2)$ and define $g(\zeta) = (0, 0, 0, x_2, 0, x_5)$. Calculate

 $(f \star g)(\zeta) = (0, 0, 0, x_2, 0, x_5)$ & $(g \star f)(\zeta) = (0, 0, 0, x_2, 0, x_2 + x_5)$

Observe f and g are A-differentiable and $f \star g = g$ is likewise A-differentiable. In contrast, $g \star f$ is not A-differentiable as its Jacobian matrix is nonzero in the (2,6)-entry. (A here is not simple, Rosenfeld's result does not apply)

references and acknowledgements

- this work would not be possible without the collaboration of my students: W. S. Leslie, M. L. Nguyen, B. Zhang and current N. BeDell and D. Freese
- A. Alvarez-Parrilla, M. E. Frías-Armenta, E. López-González, C. Yee-Romero, On Solving Systems of Autonomous Ordinary Differential Equations by Reduction to a Variable of an Algebra, International Journal of Mathematics and Mathematical Sciences Volume 2012, Article ID 753916, 21 pages (2012)

- P. M. Gadea, J. Grifone, J. Muñoz Masqué, *Manifolds modelled over free modules over the double numbers*, Acta Mathematica Hungarica, Volume 100, Issue 3, pp 187–203 (August 2003)
- B. Rosenfeld, *Differentiable functions in associative and alternative algebras and smooth surfaces in projective spaces over these algebras*, Publications De L'institut Mathematique. Nouvelle serie. **62**(82), 67-71 (2000)
- THANKS! Questions ?