The Joining of Quaternions with Grassmann algebras: William Kingdon Clifford

कौfgebra which cannot be
transfated into good Fingfish and sound common sense, is bad afgefra.
Thisfiam Kingdon Gifford $\mathscr{P}_{\text {ower }} \mathscr{P}_{\text {oint prosentation by }}$ Torannes Fimitton PrD

Hamilton and Quaternions

- Most of us here know the story of Hamilton and the quote on Quaternion on the plaque on Brougham (Broom) Bridge, Dublin which says:
- "Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^{2}=j^{2}=k^{2}=i j k=-1$
\& cut it on a stone of this bridge."

Hamilton and Quaternions

- This was the legendary beginning of what he called "Quaternions".

Which is what brought us all here today:

- to learn from each other the relevance of Quaternions today, more than 150 years after they were discovered.

Other contributors to this subject

- But some of us may not know much about
- Grassmann (Hermann Günther Grassmann; April 15, 1809 September 26, 1877)
Clifford (William Kingdon Clifford FRS; May 4,1845 - March 3, 1879)
- and the history of their contributions to this subject.

Hermann Günther Grassmann

- Grassmann was a person who was truly ahead of his times.
- He anticipated Hamilton in noncommutative multiplication,
- He introduced the idea of n dimensions, which is truly a modern concept.
- Much of Grassmann's work would conceptually look familiar to us today.

Grassmann and Outer Product

- Grassmann's outer products, also known as exterior products or wedge products, came before both vector and tensor analysis.
They also overlap both these subjects.
- The wedge product is defined to be associative, anticommutative, and distributive over addition.
- Grassmann provided an algebraic setting to answer geometric questions.
- For this reason a more detailed mathematical description of Grassmann's work needs to be discussed in order to understand what Clifford eventually did.

Grassmann and Outer Products

- Grassmann used lower dimensions as building blocks for higher dimensions.
- He let a line be defined by 2 connected points, a plane by 3 connected points and so on.
- For example, a vector is usually associated with a point P or a line from 0 to P.
- What Grassmann did was discuss situations where the lines start at P_{1} and end at P_{2}, but didn't necessarily go through 0 .
- This idea allowed for greater generality.

A Pictorial Discussion of what Grassmann did

- For 1 dimension: Let \mathbf{e}_{1} join any 2 points

- eris unchanged by parallel displacement of the 2 points.

Any vector \mathbf{a} is some multiple of \mathbf{e}_{1}
For example:
$\xrightarrow{\mathrm{e}_{1}} \xrightarrow{\mathrm{e}_{1}}$

The sum of two vectors is commutative
$a \quad b$
b
a
This is how Grassmann deals with the issue of magnitude

A Pictorial Discussion of what Grassmann did

- For 2 dimensions: Let $\mathbf{e}_{1}, \mathbf{e}_{2}$ be any two vectors - Shown here with a common tail

But $\mathbf{e}_{1}, \mathbf{e}_{2}$ can be independently placed

- For example a can be constructed as follows

\mathbf{e}_{1}

\mathbf{e}_{1}
\mathbf{e}_{1}
- Addition of vectors can be accomplished as follows

A Pictorial Discussion of what Grassmann did

- The wedge product of two vectors is called a bivector.

$\mathrm{e}_{1} \wedge \mathrm{e}_{2}=-\mathrm{C}_{2} \wedge \mathrm{e}_{1}$

$a \wedge b=A a b e_{1} \wedge e_{2}$

$$
\mathrm{A} a \mathrm{~b}=\frac{\text { Area of the paraelogram (made by } a, b)}{\text { Area of the unit parallelogram constructed from } e_{1}, e_{2}}
$$

- It should be noted that the same bivector can be represented by two different parallelograms provided they have the same area.

A Pictorial Discussion of what Grassmann did

- For bivectors in 3 dimensions:

- According to

Grassmann their planes can be put together in 3 dimensions in the following way

- $\mathbf{a} \wedge \mathbf{b}=\mathbf{A a b}_{\mathbf{e}} \mathbf{e}_{1} \wedge \mathbf{e}_{2}$
- $\mathbf{b}_{\wedge} \mathbf{C}=\mathbf{A b c} \mathbf{e}_{2} \wedge \mathbf{e}_{3}$
- $\mathbf{c} \wedge \mathbf{a}=$ Aca $\mathbf{e}_{3} \wedge \mathbf{e}_{1}$

A Pictorial Discussion of what Grassmann did

e3

- For easy visualization we shall now take $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to be orthonormal
For a trivector in 3 dimensions:

$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=$
$V_{\text {abc }} e_{1} \wedge e_{2} \wedge e_{3}$

$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}^{\prime}=$ $-V_{\text {abc }} \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}$

This process
can be repeated indefinitely for n dimensions.

Clifford Joins Quaternions with Grassmann algebras

- It is ironic according to D. Hestenes
- Clifford "the mathematician exhibiting the deepest understanding of Grassmann's system and advancing it in a major way, is seldom mentioned as a follower of Grassmann in historical accounts, though Clifford himself could not have been more explicit or emphatic in his claim to be following Grassmann in developing what he called 'geometric algebra'!"

Clifford Joins Quaternions with Grassmann algebras

- In 1876 Clifford wrote, but left unfinished and unpublished, a paper called "On The Classification of Geometric Algebras".
- In this paper Clifford succeeded in unifying Hamilton's quaternions with Grassmann's outer product.
- Clifford understood the deep geometric nature of the algebra Grassmann had developed.
- He also noticed that quaternions were rotational operators that fit neatly into Grassmann's algebras.
on the classification of geometric alaebras*.

Clifford Joins Quaternions with Grassmann algebras

- Clifford's inner product equips geometric algebra with a metric, and thereby incorporates distance and angle relationships for lines, planes, and volumes,
The outer product gives the planes and volumes vector-like properties, for example direction.
- Clifford's algebraic system extends to higher dimensions.
- The algebraic operations have the same symbolic form as they do in 2 or 3-dimensions.
- The importance of general Clifford algebras has grown over time and has developed a life of their own.
In this talk I will only sketch out how they connect to quaternions.
- Clifford, like Grassmann, considers units in arbitrary number (n) dimensions, $e_{1}, e_{2}, \ldots, e_{n}$, where $e_{j} e_{k}=-e_{k} e_{j}$ when $j \neq k$.
- But When $j=k$ Clifford let $e_{j}^{2}=1($ or -1$)$ where
Grassmann made $e_{j}^{2}=0$

How does Clifford do this?

- Clifford introduced the phrase 'blade of order m' to describe any wedge product $a_{j_{1}} \wedge a_{j_{2}} \wedge \ldots \wedge a_{j_{m}}$, of m vectors, if $m \geq 1$
- Ablade of order 0 is a scalar.

By adding together blades of the same order, one can obtain more general objects which Clifford calls 'homogeneous of order m'.

- If $m \geq 4$ these objects are not necessarily blades; $\boldsymbol{e}_{1} \wedge \boldsymbol{e}_{2}+\boldsymbol{e}_{3} \wedge \boldsymbol{e}_{4}$ is not a blade, because it is not equal to any $\boldsymbol{a} \wedge \boldsymbol{b}$.
- The vector space containing all these objects is denoted by V_{m}.
- Just as in quaternions one is allowed to add vectors to scalars, Clifford introduces the possibility of adding together objects of different order.

This addition is commutative and associative, and generates a whole space of objects widely known as 'clifs'.

- Clifs span all of the V_{m} 's.
- The dimension of any V_{m} is the binomial coef. $\binom{n}{m}, \mathrm{n}$ is the dimension of physical space.

How does Clifford do this?

- To make the 'clifs' into an algebra, we need an associative multiplication distributive over addition.
- This is automatically provided by the definition:

$$
u v=u \cdot v+u \wedge v
$$

- If u and v are arbitrary clifs, they can be decomposed into sums of scalars and multivectors of the form $e_{j_{1}} \wedge e_{j_{2}} \wedge \ldots \wedge$ $e_{j_{m}}$; then $u \cdot v$ and $u \wedge v$ are given by the distributive law. - The span of all the V_{m} is now a graded algebra known as Ce(n), in which V_{m} contains all the objects of grade m . The dimension of $\mathcal{C l}(n)$ as a vector space is 2^{n}.

How does Clifford do this?

- Clifford defines the product of all n units to be $\omega \equiv e_{1} e_{2} e_{3} \ldots . e_{n}$
- Then ω commutes or anticommutes with each e_{j} according as n odd or even.

In the odd case ω is a true scalar; in the even case it is not, since a scalar must commute with everything.

- He then investigates ω^{2}, finding
- $\omega^{2}=e_{1} e_{2} \ldots e_{n}=(1)^{n-1} e_{1} e_{2} \ldots e_{n-1}=(1)^{n-1}(1)^{n-2} e_{1} e_{2}$
$e_{n-2}=\cdots=(-1)^{s}$

$$
\text { where } s=(n-1)+(n-2)+\cdots+1=\binom{n}{2}=\frac{n(n+1)}{2}
$$

How does Clifford do this?

- Now suppose that u and v belong to V_{m} and V_{m} respectively.
- When we multiply them, we get two terms, $u \cdot v$ and $u \wedge v$ pelonging respectively to $\mathrm{V}_{\left(m+m^{\prime}-2\right)}$ and to $\mathrm{V}_{\left(m+m^{\prime}\right)}$
- These are either both even or both odd.
- In particular, if m and m ' are both even then uv will be of even order.

Therefore the units of even order: $1, e_{j} e_{k}, e_{j} e_{k} e_{l} e_{m}, \ldots$ where $\neq k \neq l \neq m$, form a closed subalgebra.
Clifford called this the 'even subalgebra'.

How does Clifford do this?

- In the case where s is odd, ω can be considered as an imaginary unit. However, it is not an imaginary scalar unless n is also odd. (For example, $\mathrm{n}=3$ or 7 , see table below)
Thus for $\mathrm{n}=3$, Clifford is able to reduce the eight-dimensional algebra over the reals to a four-dimensional algebra (the quaternions) over the complex field.

n	$\omega=$ scalar?	s	$\boldsymbol{\omega}^{\mathbf{2}}=(\mathbf{- 1})^{\boldsymbol{s}}$	ω
1	yes	0	1	Real
2	no	1	-1	Imaginary
3	yes	3	-1	Imaginary
4	no	6	1	Real
5	yes	10	1	Real
6	no	15	-1	Imaginary
7	yes	21	-1	Imaginary

Clifford 3D Geometric Algebra

- For example let $n=3$ and $e_{j}^{2}=+1 \Rightarrow j=1,2,3 \Rightarrow \omega^{2}=$ 1 and this commutes with all the elements of the algebra.
Thus we can consider $\omega \equiv(\sqrt{-1})$.
- The even subalgebra has basis $\left\{1 ; e_{2} e_{3} ; e_{1} e_{3} ; e_{1} e_{2}\right\}$
- It gives the quaternions:
$i \equiv e_{2} e_{3}, j \equiv e_{1} e_{3}, k \equiv e_{1} e_{2}$ in Hamilton's notation.
- Thus a pure quaternion is actually a bivector in the context of Clifford algebras.

Clifford 4D Geometric Algebra

- From table: in 4 dimensions $s=3+2+1=6$ is even. Therefore ω is real. But ω is not a scalar because n is even. This makes ω anticommute with vectors (members of V_{1}).
- But ω does commute with all members of $\mathrm{V}_{0}, \mathrm{~V}_{2}$, and V_{4}. These span the even subalgebra, which contains the quaternions.
- The whole algebra in 4D is spanned by $2^{4}=16$ generators where half of these are of even order.

Clifford 4D Geometric Algebra

- The even subalgebra is spanned by the following 8 generators: V_{0} has 1 generator which we call (1).
- V_{2} has 6 generators $\left(\mathrm{e}_{2} \mathrm{e}_{3}\right),\left(\mathrm{e}_{3} \mathrm{e}_{1}\right),\left(\mathrm{e}_{1} \mathrm{e}_{2}\right),\left(\mathrm{e}_{0} \mathrm{e}_{1}\right),\left(\mathrm{e}_{0} \mathrm{e}_{2}\right),\left(\mathrm{e}_{0} \mathrm{e}_{3}\right)$.
- V_{4} has 1 generator $\left(e_{0} e_{1} e_{2} e_{3}\right)=\omega$.
- To show that every member of the even subalgebra can be written as $(q)+\left(q^{\prime}\right) \omega$, where q and q^{\prime} are quaternions.

We see that (q) is just $\mathrm{q}_{0}(1)+\mathrm{q}_{1}(\mathrm{i})+\mathrm{q}_{2}(\mathrm{j})+\mathrm{q}_{3}(\mathrm{k})$, where q_{0}, q_{1}, etc. are any (real) numbers. This is just what we can get from V_{0} and the first three generators of V_{2}.

Clifford 4D Geometric Algebra

- To deal with the q' part, let's work backwards. We are looking for (q) ω, which can be expressed as

$$
\left(q^{\prime}\right) \omega=q_{0}^{\prime} \omega+q_{1}^{\prime}(\mathrm{i}) \omega+\mathrm{q}_{2}^{\prime}(\mathrm{j}) \omega+\mathrm{q}_{3}^{\prime}(\mathrm{k}) \omega .
$$

- But (i) $\omega=\left(e_{2} e_{3}\right)\left(e_{0} e_{1} e_{2} e_{3}\right)=-\left(e_{0} e_{1}\right),(j) \omega=-\left(e_{0} e_{2}\right)$, and $(k) \omega=-\left(e_{0} e_{3}\right)$.
- So $\left(q^{\prime}\right) \omega=q_{0}^{\prime}\left(e_{0} e_{1} e_{2} e_{3}\right)-q_{1}^{\prime}\left(e_{0} e_{1}\right)-q^{\prime}\left(e_{0} e_{2}\right)-q_{3}^{\prime}\left(e_{0} e_{3}\right)$.
- This is just what we can get from V_{4} and the last three generators of V_{2}. (The signs of $\mathrm{q}_{1}{ }^{\prime}$, etc. are arbitrary.)
- Any expression of the form $q+q^{\prime} \omega$ where q and q^{\prime} is a quaternion this is what Clifford called 'biquaternions'.

Clifford Joins Quaternions with Grassmann algebras

- Clifford had first introduced his notion of 'biquaternions' in "Preliminary Sketch of Biquaternions" in 1873 to the London mathematical Society.
This was essentially the result of his synthesis of Grassmann's and Hamilton's ideas.
- His deeper development of these ideas were discovered later and found amongst his unpublished, unfinished papers after his death in 1879. and direction, but no particular position; the vector $A B$ being regaraled as identical with the vector $O D$ when $A B$ is equal and rigid body D and in the same sense. The translation of all rigid body is an example of such a quantity; for since all particles of the body move through equal distances along paraliel straight lines in the same sense, the motion is entirely
specified by a straight line of the given length and direction specified by a straight line of the given length and direction drawn through any point whatever. A couple, again, may be
adequately represented by a vector; since the axis of a couple adequately represented by a vector; since the axis of a couple dicular from a given face of its plane.

For many purposes, however, it is necessary to consider quantities which have not only magnitude and direction, but position also. The rotational velocity of a rigid body is about a certain definite axis, and equal rotations about two parallel axes are not equivalent to one another. A force acting upon a solid has a definite line of action, and equal forces acting along parallel lines differ by a certain couple. The difference between the two kinds of quantities is clearly seen when we consider the
geometric calculus which is used for the study of each. In

Bllbllography:

- Naxthematlical papors, by Winliam KIngdon Cuifiord. Edla by Robort Tuckers With an Introductlon by N. ․ J. Stophon Smith.
- D. Hestones (Grassmann's legacy; Published in Hala Petsche, Aa Lewls, J. Llesen, Sa Russ (Edls) From Past to Future: Grassmann's Work In Context (Bliklnäuser: Borllin, 2011),
- Adel Diek and Ro Kantowskl,(Some Clifiord algebra history, Clifford Algebres and Splnor Sturctures,Math. Applo321 (1995), 3-12.)
WHillam Kingelon cuifiord (Wiklpodla)
- Browne, John (2001, January , Incomplete draft i Gressmann Algebrao)

- Octomlons = Clufford algelbres 2.3 (Baez) hittid/mathoucroodu/home/beoz/octonlons/modoe.htanl Ples (Not by the author of thls powerpoint or Wiklpodlla)
 with $=$ Clufiond ${ }^{2}$-geometric-algebra-lm
 hituse//slehar.wordpress.com/2014/03/18/cliffiord-algelbra-a-visualdintoductlon

ThankYondes
The Big Red Algebra)

