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Hamilton and Quaternions

* Most of us here know the story of Hamilton
and the quote on Quaternion on the
plaque on Brougham (Broom) Bridge,
Dublin which says:

* “Here as he walked by on the 16th of
October 1843
Sir Willlam Rowan Hamilton in a flash of
genius discovered the fundamental
formula for quaternion multiplication
P=pP=k2=1jk=-1
& cut it on a stone of this bridge.”




N Hamilton and Quaternions

* This was the legendary beginning of what he called
“Quaternions”.

* Which Is what brought us all here today:

* to learn from each other the relevance of Quaternions
today, more than 150 years after they were discovered.
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Other contributors to this subject

e But'some of us may not know much about

« _Grassmann (Hermann Gunther Grassmann; April 15, 1809 —
September 26, 1877)

* Clifford (Willlam Kingdon Clifford FRS; May 4,1845 — March 3, 1879)
« and the history of their contributions to this subject.
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-~ Hermann Gunther Grassmann

« Grassmann was a person who was
truly ahead of his times.

* He anticipated Hamilton in non-
commutative multiplication,

* He introduced the idea of n
dimensions, which is truly a
modern concept.

* Much of Grassmann’s work would
conceptually look familiar to us
today.




Grassmann and Outer Product

Grassmann’s outer products, also known as exterior products or
wedge products, came before both vector and tensor analysis.

They also overlap both these subjects.

The wedge product is defined to be associative, anticommutative,
and distributive over addition.

Grassmann provided an algebraic setting to answer geometric
guestions.

For this reason a more detailed mathematical description of
Grassmann’s work needs to be discussed in order to understand ¢
what Clifford eventually did. !




Grassmann and Outer Products

Grassmann used lower dimensions as building blocks for higher
dimensions.

He let a line be defined by 2 connected points, a plane by 3
connected points and so on.

For example, a vector is usually associated with a point P or a line
from O to P.

What Grassmann did was discuss situations where the lines start
at P1 and end at P2, but didn’t necessarily go through O

This idea allowed for greater generality.
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A Pictonal Discussion of what Grassmann did

e1

* For1l dimension: Let e1 join any 2 points S

-1-1S unchanged by parallel displacement of the 2 points.

MM

e1 ] e1 )
¢/ Any vector a Is some multiple of ex
* For example:

— —
e1 e1

}

a—Eel
T2

e The sum of two vectors IS commutative

o — = — >
a b b a

e This i1s how Grassmann deals with the issue of _

& magnitude
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A Pictorial Discussion of what Grassmann did
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* For2 dimensions: Let e1, e2 be any two vectors

e2

o .Shown here with a common tall -

* But e1,e2 can be independently placed =/

* For example a can be constructed as follows




A Pictorial Discussion of what Grassmann did

* The wedge product of two vectors is Cglled a bivector.

lllllllllllllllllllllllll

¥ eLAE2=-e2A €1 e

"""" \ arb=Aaein e a

Area of the paraelogram (made by a,b)

Aab =

Area of the unit parallelogram constructed from eq,ey

* |t should be noted that the same bivector can be
represented by two different parallelograms provided they

( Nave the same area.
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A Pictorial Discussion of what Grassmann did
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 For bivectors in 3 dimensions:
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Grassmann their planes

can be put together in 3

a —, C
K \ dimensions in the

.............................. following way

e arb = Aav €1 A €2
e bAC = Abc €2 A €3
e chna=Acaes el




A Picetorial Discussion of what Grassmann did

- — * For easy visualization we shall
es3
| now take e1, e2 esto be
L orthonormal
* For a trivector in 3 dimensions:
aanbac .
' This process
© G can be
— repeated

iIndefinitely for
n dimensions.

Vabe €1 A €2 A €3 -Vabc €1 A €2 A €3




Clifford Joins Quaternions with Grassmann algebras
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* Itisironic according to D. Hestenes

+-Clifford "the mathematician exhibiting the deepest

_nderstanding of Grassmann’s system and advancing it in a
major way, Is seldom mentioned as a follower of Grassmann
In historical accounts, though Clifford himself could not have
been more explicit or emphatic in his claim to be following
Grassmann in developing what he called ‘geometric
algebra’l”

¢ ... forgeometry, you know, is the
4 gate of science, and the gate is
s0 low and small that one

can only enter it as a little child.




Clifford Joins Quaternions with Grassmann algebras

* In 1876 Clifford wrote, but left unfinished and unpublished, a
paper called “On The Classification of Geometric Algebras”.

* /In this paper Clifford succeeded in unifying Hamilton's

guaternions with Grassmann's outer product.

 Clifford understood the deep geometric nature of
the algebra Grassmann had developed.

* He also noticed that quaternions were rotational
operators that fit neatly into Grassmann’s
algebras.

1848 Kirkman, Pluguaternions and Homoid Products,

1870 Peirce, Linear Associative Algebra.
In the Baryoentrio Caloulus a point is represented by a complex n
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?uaternions.
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Clifford Joins Quaternions with Grassmann algebras

Clifford’s inner product equips geometric algebra with a metric, anc
thereby incorporates distance and angle relationships for lines,
planes, and volumes,

The outer product gives the planes and volumes vector-like
properties, for example direction.

Clifford's algebraic system extends to higher dimensions.

The algebraic operations have the same symbolic form as they do Iin
2 or 3-dimensions.

The importance of general Clifford algebras has grown over-time
and has developed a life of their own.

In this talk | will only sketch out how they connect to




How does Clifford do this?

 Clifford, like Grassmann, considers
units in arbitrary number (n)
dimensions, e, e,, ..., e, , where

eje, = —e e; whenj # k.

 But Whenj = k Clifford let

ejz =1 (or — 1) where

Grassmann made ej2 =0




How does Clifford do this?
 Clifford introduced the phrase ‘blade of order m’ to describe

any wedge product a; Ana;, A ... A a;_, of mvectors,ifmz=1

« Ablade of order O Is a scalar.

¢/ By adding together blades of the same order, one can
obtain more general objects which Clifford calls
‘homogeneous of order m'.

 Ifm > 4these objects are not necessarily blades;
einez + e3nes ISNOtablade, because it is not equal to

any anb.
* The vector space containing all these objects S

& denoted by V




How does Clifford do this?

» Just asn guaternions one Is allowed to add vectors to
scalars, Clifford introduces the possibility of adding together
objects of different order.

* This addition iIs commutative and associative, and generates
a whole space of objects widely known as ‘clifs’. |

» Clifs span all of the V's.

* The dimension of any V_, Is the binomial

coef.(:l), n Is the dimension of physical space.




How does Clifford do this?
 To make the ‘clifs’ into an algebra, we need an associative

multiplieation distributive over addition.

«~ This I1s automatically provided by the definition:
uv =u * v + uAnvm.

* If u and v are arbitrary clifs, they can be decomposed into
sums of scalars and multivectors of the form € Nej, A ... A

e; ;thenu - vandu A v are given by the distributive law.
* The span of all the V, Is now a graded algebra known as /

CL(n), in which V., contains all the objects of grade m.

The.dimension of C¢(n) as a vector space is 2. -z

- . \\\‘
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| | How does Clifford do this?
 Clifford defines the product of all n unitsto be w = e e,e;.... e,

* Them'w commutes or anticommutes with each e; according as
n odd or even.

’ 4

¢ In the odd case w Is a true scalar:; in the even case It IS not,
since a scalar must commute with everything.

 He then investigates w?, finding

e w® =eey... e, =(D"ejey.0,1 =)D %eqe,

Cn—2 = """ = (_1)5

where s =(n—1)+(n—2)+---+1:(

N
2 y
-
-

Tl) n(n+1) kb




- How does Clifford do this?
- Now suppose that u and v belongto V., and V., \\

respectively.

* When we multiply them, we get two terms, u - v and uav
belonging respectively to V .2y and t0 V.

e These are either both even or both odd.

* |n particular, if m and m’ are both even then uv will be of
even order.

* Therefore the units of even order: 1, e;e,, e;e e e, ... where

j # k # | # m, form a closed subalgebra.
o Clifford called this the ‘even subalgebra’.

21

- . \-\\‘ >



- How does Clifford do this?

* In the case where s is odd, w can be considered as an imaginary
unit. However, It Is not an imaginary scalar unless n is also odd. (For

example, n=3 or 7, see table below)
* /Thus for n=3, Clifford is able to reduce the eight-dimensional algebra

over the reals to a four-dimensional algebra (the quaternions) over

the complex il --—

=

~N O O b WO DN B

no
yes
no
yes
no
yes

-1
-1

Real
Imaginary
Imaginary

Real

Real
Imaginary
Imaginary
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Clifford 3D Geometric Algebra

* Forexampleletn = 3ande?” = +1= j = 1,23 = w?

A

|t gives the quaternions:

* [ =e,e,; ] = ee3k = e e, in Hamilton’s notation.

* Thus a pure guaternion is actually a bivector in the
context of Clifford algebras.

and this commutes with all the elements of the algebra.
Nus we can consider w = (vV—1).

ne even subalgebra has basis {1; e,e;; e e5; e e,}




Ny Chifford 4D Geometric Algebra

 From.table:in4 dimensionss=3+2+1=61S \\
even. Therefore w is real. But w is not a scalar because n is
even. This makes w anticommute with vectors (members of
V).

« But w does commute with all members of V,, V,, and

V,. These span the even subalgebra, which contains the
guaternions.

* The whole algebra in 4D is spanned by 24 =16 generators
where half of these are of even order.




Clifford 4D Geometric Algebra

 The even subalgebra is spanned by the following 8 generators:

»~V4 has 1 generator which we call (1).
* V, has 6 generators (e,€3), (€3€,), (€:€5), (€g€1), (€¢€,), (€x€3).

* V, has 1 generator (e,e,e,e5) = W.
* To show that every member of the even subalgebra can be
written as (q) + (q')w, where q and g are quaternions.

« We seethat (q)isjust qo (1) + gz (1) + g2 (J) + gs (k), where go,
Ji, etc. are any (real) numbers. This Is just what we can get from
Vo and the first three generators of V.

o~ 00
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Clifford 4D Geometric Algebra

 To deal'with the g' part, let's work backwards. We are looking for
(q’)w, which can be expressed as

(@)w=qrw+q (jJw+aq,(jlw+g’;(kw.
* But (i)w = (e,e5)(e e e,e5) = -(epe,), (j)w =-(eye,), and (k)w = -(eye;).
* S0 (9)w =q (80€18283) - A'1 (€0€1) - A'2(€0€2) - q'5(€pes)-

* This is just what we can get from V, and the last three generators of
V,. (The signs of q,’, etc. are arbitrary.)

* Any expression of the form g+ gw wheregqand q'is a //
guaternion this is what Clifford called ‘biquaternions’. p

o~
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Clifford Joins Quaternions with Grassmann algebras

 Clifford had first introduced his notion of ‘biguaternions’ in
"Preliminary Sketch of Biquaternions” in 1873 to the London

mathematical Society.

*"This was essentially the result of his synthesis of
Grassmann’s and Hamilton’s ideas.

* His deeper development of these ideas were
discovered later and found amongst his
unpublished, unfinished papers after his death In

1879.

S~

bR Clpfored .
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PRELIMINARY BEETCH OF BIQUATERNIONS®,

I8

THE vectors of Hamilton are quantities having magnitude
and direction, but no particular position; the vector 4B being
regarded as identical with the vector CD when AB is equal and
parallel to CD and in the same sense. The translation of a
rigid body is an example of such a quantity; for since all
particles of the body move through equal distances along
parallel straight lines in the same sense, the motion is entirely
specified by a straight line of the given length and direction
drawn through any point whatever. A couple, again, may be
adequately represented by a vector ; since the axis of a couple
is any line of length proportional to its moment drawn perpen-
dicular from a given face of its plane,

For many purposes, however, it is necessary to consider
quantities which have not only magnitude and direction, but
position also. The rotational velocity of a rigid body is about a
certain definite axis, and equal rotations about two parallel axes
are not equivalent to one another. A force acting upon a solid
has a definite line of action, and equal forces acting along
parallel lines differ by a certain couple. The difference between
the two kinds of quantities is clearly seen when we consider the
geometric calculus which is used for the study of each. In

* [From the Proceedings of the London Mathematical Society, Vol. 1v.
Nos. 64, 65, pp. 831—895.]
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