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Hamilton and Quaternions

• Most of us here know the story of Hamilton 

and the quote on Quaternion on the 

plaque on Brougham (Broom) Bridge, 

Dublin which says:

• “Here as he walked by on the 16th of 

October 1843

Sir William Rowan Hamilton in a flash of 

genius discovered the fundamental 

formula for quaternion multiplication

i² = j² = k² = i j k = −1

& cut it on a stone of this bridge.”
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Hamilton and Quaternions

• This was the legendary beginning of what he called 

“Quaternions”.

• Which is what brought us all here today: 

• to learn from each other the relevance of Quaternions 

today, more than 150 years after they were discovered. 
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Other contributors to this subject

• But some of us may not know much about 

• Grassmann (Hermann Günther Grassmann; April 15, 1809 –

September 26, 1877)  

• Clifford (William Kingdon Clifford FRS; May 4,1845 – March 3, 1879) 

• and the history of their contributions to this subject. 

Hermann Günther Grassmann

William Kingdon Clifford 
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Hermann Günther Grassmann

• Grassmann was a person who was 

truly ahead of his times. 

• He anticipated Hamilton in non-

commutative multiplication, 

• He introduced the idea of n 

dimensions, which is truly a 

modern concept.

• Much of Grassmann’s work would 

conceptually look familiar to us 

today.
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Grassmann and Outer Product

• Grassmann’s outer products, also known as exterior products or 

wedge products, came before both vector and tensor analysis.

• They also overlap both these subjects. 

• The wedge product is defined to be associative, anticommutative, 

and distributive over addition.

• Grassmann provided an algebraic setting to answer geometric 

questions.

• For this reason a more detailed mathematical description of 

Grassmann’s work needs to  be discussed in order to understand 

what Clifford eventually did.
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Grassmann and Outer Products

• Grassmann used lower dimensions as building blocks for higher          

dimensions.

• He let a line be defined by 2 connected points, a  plane by 3 

connected points and so on.
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• For example, a vector is usually associated with a point P or a line 

from 0 to P. 

• What Grassmann did was discuss situations where the lines start 

at P1 and end at P2, but didn’t necessarily go  through 0. 

• This idea allowed for greater generality. 



A Pictorial Discussion of what Grassmann did
• For 1 dimension: Let e1 join any 2 points
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P1 P2

e1

e1 e1

e1 e1

a = 
𝟑

𝟐
e1

• e1 is unchanged by parallel displacement of the 2 points.

• Any vector a is some multiple of e1 

• For example:

• The sum of two vectors is commutative

a b
=

b a

• This is how Grassmann deals with the issue of    

magnitude



A Pictorial Discussion of what Grassmann did

• For 2 dimensions: Let e1, e2  be any two vectors
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e1

e2

• Shown here with a common tail

• But e1, e2 can be independently placed

e1

e2

e1

e2

• For example a can be constructed as follows 

e1

a= 2e1 + e2

• Addition of vectors can be accomplished as follows

a

ba + b

b

a

b + a

a + b = b + a



A Pictorial Discussion of what Grassmann did

• The wedge product of two vectors is called a bivector.
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e1

e2
e2

e1

e1  e2 = -e2  e1

a

a  b =Aab e1  e2

Aab = 
𝑨𝒓𝒆𝒂 𝒐𝒇 𝒕𝒉𝒆 𝒑𝒂𝒓𝒂𝒆𝒍𝒐𝒈𝒓𝒂𝒎 (𝒎𝒂𝒅𝒆 𝒃𝒚 𝒂,𝒃)

𝑨𝒓𝒆𝒂 𝒐𝒇 𝒕𝒉𝒆 𝒖𝒏𝒊𝒕 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝒐𝒈𝒓𝒂𝒎 𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒆𝒅 𝒇𝒓𝒐𝒎 𝒆𝟏,𝒆𝟐

• It should be noted that the same bivector can be 

represented by two different parallelograms provided they 

have the same area.

e1  e2 e2  e1

b



A Pictorial Discussion of what Grassmann did
• For bivectors in 3 dimensions: 
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a

b

c 

• ab = Aab e1  e2

• bc = Abc e2  e3

• ca = Aca e3  e1

b

c 

a

• According to 

Grassmann their planes 

can be put together in 3 

dimensions in the 

following way 



A Pictorial Discussion of what Grassmann did
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• For a trivector in 3 dimensions: 

a
b

c a
b c’ 

a  b  c =

Vabc e1  e2 e3

• For easy visualization we shall 

now take e1, e2, e3 to be 

orthonormal

e1

e2

e3

This process 

can be 

repeated 

indefinitely for 

n dimensions. 
a  b c’ =

-Vabc e1  e2 e3



Clifford Joins Quaternions with Grassmann algebras

• It is ironic according to D. Hestenes

• Clifford “the mathematician exhibiting the deepest 

understanding of Grassmann’s system and advancing it in a 

major way, is seldom mentioned as a follower of Grassmann 

in historical accounts, though Clifford himself could not have 

been more explicit or emphatic in his claim to be following 

Grassmann in developing what he called ‘geometric     

algebra’!”
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Clifford Joins Quaternions with Grassmann algebras

• In 1876 Clifford wrote, but left unfinished and unpublished, a 

paper called “On The Classification of Geometric Algebras”.

• In this paper Clifford succeeded in unifying Hamilton’s 

quaternions with Grassmann's outer product. 
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• Clifford understood the deep geometric nature of 

the algebra Grassmann had developed.

• He also noticed that quaternions were rotational 

operators that fit neatly into Grassmann’s 

algebras.



Clifford Joins Quaternions with Grassmann algebras

• Clifford’s inner product equips geometric algebra with a metric, and 

thereby incorporates distance and angle relationships for lines, 

planes, and volumes, 

• The outer product gives the planes and volumes vector-like 

properties, for example direction.

• Clifford's algebraic system extends to higher dimensions. 

• The algebraic operations have the same symbolic form as they do in 

2 or 3-dimensions. 

• The importance of general Clifford algebras has grown over time    

and has developed a life of their own. 

• In this talk I will only sketch out how they connect to              

quaternions.
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How does Clifford do this?

• Clifford, like Grassmann, considers 

units in arbitrary number (n) 

dimensions,  𝑒1, 𝑒2, … , 𝑒𝑛 , where 

𝑒𝑗 𝑒𝑘 = −𝑒𝑘 𝑒𝑗 𝑤ℎ𝑒𝑛 𝑗 ≠ 𝑘.
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• But When 𝑗 = 𝑘 Clifford let 

𝑒𝑗
2 = 1 𝑜𝑟 − 1 where 

Grassmann made 𝑒𝑗
2 = 0



How does Clifford do this?
• Clifford introduced the phrase ‘blade of order m’ to describe 

any wedge product 𝑎𝑗1𝑎𝑗2  …  𝑎𝑗𝑚,  of m vectors, if m ≥ 1

• A blade of order 0 is a scalar.

• By adding together blades of the same order, one can 

obtain  more general objects which Clifford calls 

‘homogeneous of order m’.

• If 𝑚 ≥ 4 these objects are not necessarily blades; 

𝒆𝟏  𝒆𝟐 + 𝒆𝟑  𝒆𝟒 is not a blade, because it is not equal to 

any 𝒂𝒃.
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• The vector space containing all these objects is 

denoted by Vm .



How does Clifford do this?

• Just as in quaternions one is allowed to add vectors to 

scalars, Clifford introduces the possibility of adding together 

objects of different order.

• This addition is commutative and associative, and generates 

a whole space of objects widely known as ‘clifs’. 

• Clifs span all of the Vm’s.

18

• The dimension of any Vm is the binomial 

coef.
𝑛
𝑚

, n is the dimension of physical space.



How does Clifford do this?
• To make the ‘clifs’ into an algebra, we need an associative 

multiplication distributive over addition. 

• This is automatically provided by the definition:

𝑢𝑣 = 𝑢 ∙ 𝑣 + 𝑢  𝑣.

• If 𝑢 and 𝑣 are arbitrary clifs, they can be decomposed into 

sums of scalars and multivectors of the form 𝑒𝑗1𝑒𝑗2  … 

𝑒𝑗𝑚; then 𝑢 ∙ 𝑣 and 𝑢  𝑣 are given by the distributive law.

• The span of all the Vm is now a graded algebra known as

Cl(n), in which Vm contains all the objects of grade m.             

The dimension of Cl(n) as a vector space is 2𝑛.
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How does Clifford do this? 
• Clifford defines the product of all n units to be 𝜔 ≡ 𝑒1𝑒2𝑒3… . 𝑒𝑛

• Then 𝜔 commutes or anticommutes with each 𝑒𝑗 according as 

n odd or even.

• In the odd  case ω is a true scalar; in the even case it is not, 

since a scalar must commute with everything.

• He then investigates 𝜔2, finding 

• 𝜔2 = 𝑒1𝑒2 … 𝑒𝑛 = 1 𝑛−1𝑒1 𝑒2…𝑒𝑛−1 = 1 𝑛−1 1 𝑛−2𝑒1𝑒2 …

𝑒𝑛−2 = ⋯ = −1 𝑠

where 𝑠 = 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 =
𝑛
2

=
𝑛 𝑛+1

2
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How does Clifford do this?

• Now  suppose that u and v belong to Vm and Vm’

respectively. 

• When we multiply them, we get two terms, 𝑢 ∙ 𝑣 and 𝑢𝑣

belonging respectively to V(m+m’-2) and to V(m+m’)

• These are either both even or both odd.

• In particular, if m and m’ are both even then uv will be of 

even order.

• Therefore the units of even order: 1, 𝑒𝑗𝑒𝑘, 𝑒𝑗𝑒𝑘𝑒𝑙𝑒𝑚, … where 

𝑗 ≠ 𝑘 ≠ 𝑙 ≠ 𝑚, form a closed subalgebra.

• Clifford called this the ‘even subalgebra’. 

21



How does Clifford do this?

• In the case where s is odd, ω  can be considered as an imaginary 

unit. However, it is not an  imaginary scalar unless n is also odd. (For 

example, n=3 or 7, see table below)
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• Thus for n=3, Clifford is able to reduce the eight-dimensional algebra 

over the reals to a four-dimensional algebra (the quaternions) over 

the complex field. 𝑛 𝜔 = 𝑠𝑐𝑎𝑙𝑎𝑟? 𝑠 𝝎𝟐 = −𝟏 𝒔 𝜔

1 yes 0 1 Real 

2 no 1 -1 Imaginary

3 yes 3 -1 Imaginary

4 no 6 1 Real

5 yes 10 1 Real

6 no 15 -1 Imaginary

7 yes 21 -1 Imaginary



• For example let 𝑛 = 3 and 𝑒𝑗
2 = + 1 ⇒ 𝑗 = 1,2,3 ⇒ 𝜔2 =

−1 and this commutes with all the elements of the algebra.

• Thus we can consider 𝜔 ≡ ( −1).

• The even subalgebra has basis {1; 𝑒2𝑒3; 𝑒1𝑒3; 𝑒1𝑒2}
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• It gives the quaternions: 

• 𝑖 ≡ 𝑒2𝑒3, 𝑗 ≡ 𝑒1𝑒3, 𝑘 ≡ 𝑒1𝑒2 in Hamilton’s notation.

• Thus a pure quaternion is actually a bivector in the 

context of Clifford algebras.

Clifford 3D Geometric Algebra 



• From table: in 4 dimensions s = 3 + 2 + 1 = 6 is 

even. Therefore ω is real. But ω is not a scalar because n is 

even. This makes ω anticommute with vectors (members of 

V1).

• But ω does commute with all members of V0, V2, and 

V4. These span the even subalgebra, which contains the 

quaternions.

• The whole algebra in 4D is spanned by 24 =16 generators, 

where half of these are of even order.
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Clifford 4D Geometric Algebra 



• The even subalgebra is spanned by the following 8 generators:

• V0 has 1 generator which we call (1). 

• V2 has 6 generators (e2e3), (e3e1), (e1e2), (e0e1), (e0e2), (e0e3).

• V4 has 1 generator (e0e1e2e3) = ω.
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Clifford 4D Geometric Algebra 

• To show that every member of the even subalgebra can be 

written as (q) + (q’)ω, where q and q’ are quaternions. 

• We see that (q) is just  q0 (1) + q1 (i) + q2 (j) + q3 (k), where q0, 

q1, etc. are any (real) numbers. This is just what we can get from 

V0 and the first three generators of V2.



• To deal with the q’  part, let’s work backwards.  We are looking for 

(q’)ω, which can be expressed as

(q’)ω = q’0 ω + q’1 (i)ω + q’2 (j)ω + q’3 (k)ω .

• But (i)ω = (e2e3)(e0e1e2e3) = -(e0e1), (j)ω = -(e0e2), and (k)ω = -(e0e3).

• So (q’)ω = q’0 (e0e1e2e3) - q’1 (e0e1) - q’2(e0e2) - q’3(e0e3).

• This is just what we can get from V4 and the last three generators of 

V2. (The signs of q1’, etc. are arbitrary.)
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Clifford 4D Geometric Algebra 

• Any expression of the form q + q’ω where q and q’ is a 

quaternion this is what Clifford called ‘biquaternions’.



Clifford Joins Quaternions with Grassmann algebras

• His deeper development of these ideas were 

discovered later and found amongst his 

unpublished, unfinished papers after his death in 

1879.
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• Clifford had first introduced his notion of ‘biquaternions’ in 

"Preliminary Sketch of Biquaternions” in 1873 to the London 

mathematical Society. 

• This was essentially the result of his synthesis of 

Grassmann’s and Hamilton’s ideas.
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http://aux.planetphysics.us/files/books/157/Agrsman.pdf
http://math.ucr.edu/home/baez/octonions/node6.html
https://www.researchgate.net/figure/264900490_fig4_Fig-4-The-geometry-of-3-D-space-modeled-with-Clifford's-geometric-algebra-In
http://www.euclideanspace.com/maths/algebra/clifford/geometry/geometricalInterpretation/
https://slehar.wordpress.com/2014/03/18/clifford-algebra-a-visual-introduction/
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